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Abstract— Rough set theory was introduced in 1982. Soon it
was combined with fuzzy set theory, giving rise to a hybrid model,
involving fuzzy sets and fuzzy relations, which appears to be a
natural, elegant generalization. In this paper we reveal that in the
fuzzification process an important step seems to be overlooked.
The most fascinating part is that this forgotten step arises from
the true essence of fuzzy set theory: namely, that an element can
belong to a given degree to more than one fuzzy set at the same
time.

I. I NTRODUCTION

Pawlak [12] launched rough set theory as a framework for
the construction of approximations of concepts when only
incomplete information is available. The available information
consists of a setA of examples (a subset of a universeX, X
being a non-empty set of objects we want to say something
about) of a conceptC, and a relationR in X. R models “indis-
cernibility” or “indistinguishability” and therefore generally is
a tolerance relation (i.e. a reflexive and symmetrical relation)
and in most cases even an equivalence relation (i.e. a transitive
tolerance relation). Rough set analysis makes statements about
the membership of some elementy of X to the conceptC of
which A is a set of examples, based on the indistinguishability
betweeny and the elements ofA. To arrive at such statements,
A is approximated in two ways. An elementy of X belongs
to the lower approximation ofA if the equivalence class to
which y belongs is included inA. On the other handy belongs
to the upper approximation ofA if its equivalence class has a
non–empty intersection withA.

After a public debate reflecting rivalry between this new
theory and the slightly older fuzzy set theory, many people
have worked on the fuzzification of upper– and lower ap-
proximations (e.g. [6], [11], [14], [15], [17]). In doing so,
the central focus moved from elements’ indistinguishability
(w.r.t. their attribute values in an information system) to their
similarity—represented by a fuzzy relationR—again w.r.t. to
those attribute values: objects are categorized into classes with
“soft” boundaries based on their similarity to one another. A
concrete advantage of such a scheme is that abrupt transitions
between classes are replaced by gradual ones, allowing that
an element can belong (to varying degrees) to more than one
class. On another count the setA to be approximated can be
fuzzy as well in the new hybrid model, which is called “fuzzy
rough set theory”.

The most striking aspect of all the studies mentioned above
is that none of them tries to exploit the fact that an element
y of X can belong to some degree to several “soft similarity
classes” at the same time. This property does not only lie at the
heart of fuzzy set theory but is also crucial in the decision on
how to define lower and upper approximations. For instance, as
mentioned above, in traditional rough set theory,y belongs to
the lower approximation ofA if the equivalence class to which
y belongs is included inA. But what happens ify belongs to
several “fuzzy equivalence classes” at the same time? Do we
then require that all of them are included inA? Most of them?
Or just one? And then, which one?

Traditional fuzzy rough set theory involves only one fuzzy
equivalence class. In this paper we explore what happens
if we abandon this most obvious choice. After recalling the
necessary preliminaries in Section 2, in Section 3 we define
alternative lower and upper approximations of a (fuzzy) set
A, based on different choices about which fuzzy equivalence
classes should be included in, or have a non-empty intersec-
tion, with A. In Section 4 we examine their properties, paying
significant attention to the role that theT -transitivity of the
fuzzy relationR plays in this game. This allows us to end with
an interesting conclusion and some ideas for further research.

II. PRELIMINARIES

Throughout this paper, letT and I denote a triangular
norm and an implicator respectively. Recall that a triangular
norm (t–norm for short)T is any increasing, commutative and
associative[0, 1]2 → [0, 1] mapping satisfyingT (1, x) = x,
for all x in [0, 1]. A negatorN is a decreasing[0, 1] →
[0, 1] mapping satisfyingN (0) = 1 and N (1) = 0. N is
called involutive ifN (N (x)) = x for all x in [0, 1]. Finally,
an implicator is any[0, 1]2 → [0, 1]–mappingI satisfying
I(0, 0) = 1, I(1, x) = x, for all x in [0, 1]. Moreover we
require I to be decreasing in its first, and increasing in its
second component. IfT is a t–norm, the mappingIT defined
by, for all x andy in [0,1],

IT (x, y) = sup{λ|λ ∈ [0, 1] and T (x, λ) ≤ y}

is an implicator, usually called the residual implicator (ofT ).
If T is a t–norm andN is an involutive negator, then the
mappingIT ,N defined by, for allx andy in [0,1],

IT ,N (x, y) = N (T (x,N (y)))



is an implicator, usually called the S–implicator induced byT
andN . In Table I, II and III, we mention some well–known t–
norms, S– and residual implicators. The S–implicators in Table
II are induced by means of the standard negatorNs which is
defined byNs(x) = 1− x, for all x in [0, 1].

TABLE I

WELL-KNOWN T–NORMS (x AND y IN [0, 1])

TM(x, y) = min(x, y)
TP(x, y) = xy
TW(x, y) = max(x + y − 1, 0)

TABLE II

WELL-KNOWN S–IMPLICATORS (x AND y IN [0, 1])

ITM,Ns (x, y) = max(1− x, y)
ITP,Ns (x, y) = 1− x + xy
ITW,Ns (x, y) = min(1− x + y, 1)

TABLE III

WELL-KNOWN RESIDUAL IMPLICATORS (x AND y IN [0, 1])

ITM (x, y) =

{
1, if x ≤ y
y, otherwise

ITP (x, y) =

{
1, if x ≤ y
y
x

, otherwise
ITW (x, y) = min(1− x + y, 1)

Both a t–norm and its residual implicator as well as a t–norm
and an S–implicator induced by it, satisfy the weak shunting
principle [14]:

I(T (x, y), z) ≤ I(x, I(y, z)) (1)

Many other pairs of t–norms and implicators satisfy this
principle as well. In fact, ifT andI satisfy it, then it also holds
for I combined with every larger t-normT1 (i.e. T1(x, y) ≥
T (x, y), for all x andy in [0, 1]), because of the decreasingness
of I in its first component. This means thatTM, which is the
largest t-norm, satisfies the weak shunting principle with every
residual or S–implicator. Hence it is very easy to find pairs
of t–norms and implicators satisfying this principle, although
it does not hold in general for arbitrary combinations as the
following example shows.

Example 1:For x = 0.5, y = 0.7 andz = 0.1

ITP(TW(x, y), z) = ITP(0.2, 0.1) = 0.5

ITP(x, ITP(y, z)) = ITP(0.5,
1
7
) =

2
7

HenceITP(TW(x, y), z) > ITP(x, ITP(y, z)).
Recall that a fuzzy setA in a universeX is anX → [0, 1]

mapping. Its height is defined ashgtA = sup{A(x)|x ∈ X}.
The T –intersection of fuzzy setsA andB in X is the fuzzy
setA ∩T B defined by

A ∩T B(x) = T (A(x), B(x))

for all x in X. The degree of overlap ofA and B and the
degree of inclusion ofA in B are defined by

OVERL(A,B) = sup
x∈X

T (A(x), B(x))

INCL(A,B) = inf
x∈X

I(A(x), B(x))

A binary fuzzy relationR in X is a fuzzy set inX ×X. For
all y in X, the R-foreset ofy is the fuzzy setRy defined by
Ry(x) = R(x, y) for all x in X. If for all x in X, A(x) ∈
{0, 1} thenA is called a (crisp) set. Likewise if for allx and
y in X, R(x, y) ∈ {0, 1} thenR is called a (crisp) relation.

III. B EYOND THE OBVIOUS

A. Fuzzy Relations

FuzzyT -equivalence relations are the commonly used gen-
eralization of crisp equivalence relations.

Definition 2: A binary fuzzy relationR in X is called a
fuzzy T -equivalence relation iff for allx, y andz in X

(FE.1) R(x, x) = 1 (reflexivity)
(FE.2) R(x, y) = R(y, x) (symmetry)
(FE.3) T (R(x, y), R(y, z)) ≤ R(x, z) (T –transitivity)
Because crisp equivalence relations are used to model equal-

ity, fuzzy T -equivalence relations are commonly considered to
represent approximate equality or similarity. We will comment
on this later. Let us first observe that theR–foresets of a
crisp equivalence relation coincide with its equivalence classes,
i.e. for all y in X, Ry is the equivalence class to whichy
belongs, often denoted by[y]R. It is well known that in the
crisp case, if we consider two equivalence classes then they
either coincide or are disjoint. It is therefore not possible for
y to belong to two different equivalence classes at the same
time. If R is a fuzzy relation onX—in particular aT –fuzzy
equivalence relation —then it is quite normal that, because of
the intermediate degrees of membership, different foresets are
not necessarily disjoint.

Example 3:One can verify that for the fuzzyT –
equivalence relationR on X = {a, b}

R a b
a 1 0.2
b 0.2 1

it holds that

Ra = {(a, 1), (b, 0.2)}
Rb = {(a, 0.2), (b, 1)}

hence, for any t–normT ,

Ra ∩T Rb = {(a, 0.2), (b, 0.2)}
Note that, althoughRx∩T Ry = ∅ clearly does not hold in

general ifx 6= y, we do have the following property which is
a generalization of [7].

Proposition 4: If R is a fuzzyT –equivalence relation inX
then for allx andy in X

hgt(Rx ∩T Ry) ≤ R(x, y)
Hence,

R(x, y) = 0 implies Rx ∩T Ry = ∅



In other words the disjointness ofR–foresets is preserved if the
elements are entirely unrelated (i.e. related to degree 0). On the
other hand the coincidence ofR-foresets is preserved provided
that the elements are fully related to each other (i.e. related to
degree 1).

Proposition 5: [6] If R is a fuzzyT –equivalence relation
in X then for allx andy in X

R(x, y) = 1 ⇒ Rx = Ry
As a consequence fuzzyT –equivalence relations are not
compatible with the Poincaré paradox [5]. We say that a fuzzy
relationE in a universeX, containing at least three elements,
is compatible with the Poincaré paradox if

(∃(x, y, z) ∈ X3)(E(x, y) = 1 ∧ E(y, z) = 1 ∧ E(x, z) < 1)

This is inspired by Poincaré’s [9] experimental observation that
a bag of sugar of 10 grammes and a bag of 11 grammes can
be perceived as indistinguishable by a human being. The same
applies for a bag of 11 grammes w.r.t. a bag of 12 grammes,
while the subject is perfectly capable of noting a difference
between the bags of 10 and 12 grammes. Now ifE is a
fuzzyT –equivalence relation, then according to Proposition 5,
E(x, y) = 1 implies Ex = Ey. SinceEy(z) = E(y, z) = 1,
alsoEx(z) = E(x, z) = 1 which is in conflict withE(x, z) <
1. The fact that they are not compatible with the Poincaré
paradox makes fuzzyT –equivalence relations less suited to
model approximate equality. The main underlying cause for
this conflict isT –transitivity. This is why we will make it very
explicit in this paper every time we rely onT –transitivity of
the fuzzy relation involved.

B. Alternative Approximations

Let X be a universe andR a crisp equivalence relation. The
lower and the upper approximation (in the sense of Pawlak
[12]) of a crisp subsetA of X in the approximation space
(X, R) are the crisp setsR↓A andR↑A such that for ally in
X

y ∈ R↓A iff Ry ⊆ A

y ∈ R↑A iff Ry ∩A 6= ∅

In other words

y ∈ R↓A iff (∀x ∈ X)(x ∈ Ry ⇒ x ∈ A) (2)

y ∈ R↑A iff (∃x ∈ X)(x ∈ Ry ∧ x ∈ A) (3)

The underlying meaning is thatR↓A is the set of elements
necessarilybelonging toC (strong membership), whileR↑A
is the set of elementspossiblybelonging to the conceptC
(weak membership); fory belongs toR↓A if all elements ofX
indistinguishable fromy belong toA (hence there is no doubt
that y also belongs toA), while y belongs toR↑A as soon as
an element ofA is indistinguishable fromy. If y belongs to
the boundary regionR↑A\R↓A, then there is doubt, because
in this casey is at the same time indistinguishable from at
least one element ofA and at least one element ofX that is
not in A. We call(A1, A2) a rough set (in(X, R)) as soon as

there is a setA in X such thatR↓A = A1 and R↑A = A2

(see e.g. [14]).
Paraphrasing statements (2) and (3) and absorbing earlier

suggestions in the same direction, the following definition of
the lower and upper approximation of a fuzzy setA in X
was given in [14], constructed by means of an implicatorI,
a t–normT and a fuzzyT -equivalence relationR in X,

R↓A(y) = inf
x∈X

I(R(x, y), A(x))

R↑A(y) = sup
x∈X

T (R(x, y), A(x))

for all y in X. In other words

R↓A(y) = Incl(Ry, A)
R↑A(y) = Overl(Ry ∩T A)

(A1, A2) is called a fuzzy rough set (in(X, R)) as soon
as there is a fuzzy setA in X such that R↓A = A1

and R↑A = A2. As we mentioned before howevery may
belong to different foresets to a given extent, not only to
Ry. Therefore it appears natural to consider also the other
foresetsRz to which y has a non–zero membership degree,
and to assess the inclusion ofRz into A as well for the
lower approximation, and the overlap ofRz and A for the
upper approximation. Informally, this immediately results in
the following (inexhaustive!) list of candidate definitions for
the lower and the upper approximation ofA:

1) y belongs to the lower approximation ofA if
a) all equivalence classes containingy are included

in A
b) at least one equivalence class containingy is in-

cluded inA
c) Ry is included inA

2) y belongs to the upper approximation ofA if
a) all equivalence classes containingy have a non-

empty intersection withA
b) at least one equivalence class containingy has a

non-empty intersection withA
c) Ry has a non-empty intersection withA

For A a crisp set andR a crisp relation, more formally we
obtain the following definition.

Definition 6: Let R be a crisp relation andA a crisp set in
X.

1) The tight, loose and (usual) lower approximation ofA
are defined as

a) y ∈ R↓↓A iff (∀z ∈ X)(y ∈ Rz ⇒ Rz ⊆ A)
b) y ∈ R↑↓A iff (∃z ∈ X)(y ∈ Rz ∧Rz ⊆ A)
c) y ∈ R↓A iff Ry ⊆ A

for all y in X.
2) The tight, loose and (usual) upper approximation ofA

are defined as
a) y ∈ R↓↑A iff (∀z ∈ X)(y ∈ Rz ⇒ Rz ∩A 6= ∅)
b) y ∈ R↑↑A iff (∃z ∈ X)(y ∈ Rz ∧Rz ∩A 6= ∅)
c) y ∈ R↑A iff Ry ∩A 6= ∅

for all y in X.



Option (c) corresponds to the well–known definition from
the literature on rough set theory. In the crisp case options
(1a) through (1c) coincide, as well as options (2a) through
(2c) because then there is exactly one equivalence class to
which y belongs, namelyRy. Paraphrasing these expressions
for a fuzzy set and a fuzzy relation, we obtain the following
definitions.

Definition 7: Let R be a fuzzy relation inX andA a fuzzy
set inX.

1) The tight, loose and (usual) lower approximation ofA
are defined as

a) R↓↓A(y) = inf
z∈X

I(Rz(y), inf
x∈X

I(Rz(x), A(x)))

b) R↑↓A(y) = sup
z∈X

T (Rz(y), inf
x∈X

I(Rz(x), A(x)))

c) R↓A(y) = inf
x∈X

I(Ry(x), A(x))

for all y in X.
2) The tight, loose and (usual) upper approximation ofA

are defined as

a) R↓↑A(y) = inf
z∈X

I(Rz(y), sup
x∈X

T (Rz(x), A(x)))

b) R↑↑A(y) = sup
z∈X

T (Rz(y), sup
x∈X

T (Rz(x), A(x)))

c) R↑A(y) = sup
x∈X

T (Ry(x), A(x))

for all y in X.
The following proposition follows immediately from the def-
initions due to the symmetry ofR.

Proposition 8: For every fuzzy setA in X

R↓↓A = R↓(R↓A)
R↑↓A = R↑(R↓A)
R↓↑A = R↓(R↑A)
R↑↑A = R↑(R↑A)

C. Related Work

Although— to our knowledge—the tight and the loose lower
and upper approximations have never been considered in the
framework of fuzzy rough set theory, their crisp counterparts
have already surfaced in classical rough set theory, albeit
from different angles of interpretation. The first one is due
to Cattaneo [3]. His approach to rough sets is remarkably
different from others because it does not center around a notion
of indistinguishability or similarity, but around a dual notion of
discernibility. This discernibility is represented by a so-called
preclusivity relation, which is an irreflexive and symmetrical
relation. It can be obtained as the set theoretical complement
co R of an equivalence relation, or more generally of that of
a tolerance relationR. Apart from the usual set–theoretical
complementco A of a setA, defined by

y ∈ co A iff ¬(y ∈ A)

for all y in X, Cattaneo also defines the preclusive orthocom-
plementR#(A) of A:

y ∈ R#(A) iff (∀x ∈ X)(x ∈ A ⇒ (x, y) ∈ co R) (4)

R#(A) is the set of elements that are discernible from all
elements ofA. Using also

Rb(A) = co(R#(co A))

Cattaneo introduces theP(X)−P(X) mappingsν, I, C and
µ defined by

ν(A) = R#(co A) (necessity)
I(A) = Rb(Rb(A)) (interior)

C(A) = R#(R#(A)) (closure)
µ(A) = co(R#(A)) (possibility)

for all A in P(X). Applying the law of contraposition (p ⇒ q
if and only if ¬q ⇒ ¬p) to formula (4) it is easy to see that

R#(A) = R↓(co A)

Now for every crisp relationR and every crisp setA,
R↑(co A) = co(R↓A) andR↓(co A) = co(R↑A) holds. This
allows us to derive the following:

Rb(A) = co(R↓A) = R↑(co A)

and
ν(A) = R↓A
I(A) = R↑(R↓A)

C(A) = R↓(R↑A)
µ(A) = R↑A

In [3] Cattaneo himself gives the full expressions of Definition
6, parts 1(c) and 2(c) forν(A) andµ(A) respectively. In [8]
I(A) andC(A) are linked to the expressions of Definition 6,
parts 1(b) and 2(a) respectively, i.e. what we call tight lower
approximation and loose upper approximation. In the crisp
case, it makes sense to differentiate betweenν(A) and I(A),
and betweenµ(A) andC(A) if one is dealing with a tolerance
relationR which is not an equivalence relation. In [8] it is also
suggested to work with “tolerance classes of some iterations
of tolerance relations”. It is not elaborated there what is meant
by this, but let us assume that iteration refers to composition
of relations which is usually defined as:

(x, z) ∈ R ◦ S iff (∃y ∈ X)((x, y) ∈ R ∧ (y, z) ∈ S)

for R andS binary relations inX andx andz in X. The loose
upper approximation and the tight lower approximation under
R can be obtained as the usual upper and lower approximation
under the composition ofR with itself (for a symmetrical
relationR), i.e.

(R ◦R)↑A = R↑(R↑A)
(R ◦R)↓A = R↓(R↓A)

This kind of properties is closely related to associativity of
compositions, because an operation such as taking the upper
approximation ofA under a relationR can be seen as a kind
of composition. For a formal treatment of this connection we
refer to [10].



IV. PROPOSITIONS

Throughout this section we will assume thatR is a reflexive
and symmetrical fuzzy relation inX, which are basic require-
ments if R is supposed to model similarity. The following
proposition supports the idea of approximating a concept from
the lower and the upper side (due to the reflexivity ofR).

Proposition 9: [14] For every fuzzy setA in X

R↓A ⊆ A ⊆ R↑A
The lower and the upper approximation are monotonic oper-
ations due to the monotonicity of the fuzzy logical operators
involved.

Proposition 10: [14] For every fuzzy setA andB in X

A ⊆ B ⇒ R↓A ⊆ R↓B

A ⊆ B ⇒ R↑A ⊆ R↑B
Applying Proposition 9 we conclude that the tight lower and
the loose upper approximation are indeed a subset and a
superset ofA respectively (provided thatR is reflexive of
course).

Proposition 11: For every fuzzy setA in X

R↓(R↓A) ⊆ R↓A ⊆ A ⊆ R↑A ⊆ R↑(R↑A)
Note that in [4] it is suggested to useR↓(R↓A), R↓A, R↑A
and R↑(R↑A) as representations of the modified linguistic
expressionsextremely A, very A, more or less A and
roughly A respectively (forR being a fuzzy relation modelling
approximate equality). From Proposition 9 and Proposition 10
we obtain

R↓A ⊆ R↑(R↓A) ⊆ R↑A
R↓A ⊆ R↓(R↑A) ⊆ R↑A

for a reflexive fuzzy relationR, but no immediate information
about a direct relationship between the loose lower and the
tight upper approximation in terms of inclusion, and about
how A itself fits in this picture. The following proposition
sheds some light on this matter.

Proposition 12: [1] If R is a symmetrical fuzzy relation in
X, T is a continuous t–norm andI its residual implicator
then for every fuzzy setA in X

R↑(R↓A) ⊆ A ⊆ R↓(R↑A)
Proposition 12 does not hold in general for other choices of
t–norms and implicators that do not fulfill the properties

T (x, I(x, y)) ≤ y

y ≤ I(x, T (x, y))

as Example 13 illustrates.
Example 13:Let X andR be defined as in Example 3 and

let A be the fuzzy set inX defined asA(a) = 1 andA(b) =
0.8. Furthermore letT = TM and I = ITM,Ns

be its S–
implicator. ThenR↑A(a) = 1 andR↑A(b) = 0.8, hence

R↓(R↑A)(a) = min(max(0, 1),max(0.8, 0.8)) = 0.8

which makes it clear thatA 6⊆ R↓(R↑A).

To preserve the semantics of approximation from the lower
and the upper side, we are therefore somewhat limited in our
choice of fuzzy logical operators if we want to use the loose
lower and the tight upper approximation. Furthermore if we
assume thatR is a fuzzyT –equivalence relation, we obtain
the following remarkable propositions.

Proposition 14: [1], [2], [14] If R is a fuzzyT –equivalence
relation in X, T is a continuous t–norm andI its residual
implicator then for every fuzzy setA in X

1) R↑(R↓A) = R↓A
2) R↓(R↑A) = R↑A
Proposition 15: [14] If R is a fuzzyT –equivalence relation

in X, T is a continuous t–norm andI is a continuous
implicator such thatT and I satisfy the weak shunting
principle, then for every fuzzy setA in X

1) R↑(R↑A) = R↑A
2) R↓(R↓A) = R↓A

The weak shunting principle is only needed in the proof of
part 2 of Proposition 15 to link the implicatorI that appears
in the definition of the lower approximation with the t–norm
T for which R is T -transitive.

Giving up on T –transitivity means giving up on these
propositions, as Example 16 shows.

Example 16:Let X = [0, 1] and A the fuzzy set inX
defined asA(x) = x, for all x in X. Let the reflexive and
symmetrical fuzzy relationR in X be defined as

R(x, y) =
{

1 if |x− y| < 0.1
0 otherwise

for all x andy in X. One can verify that fory in X:

R↓A(y) = inf
z∈X

I(R(z, y), A(z))

= inf{z | z ∈ X ∧ z ∈]y − 0.1, y + 0.1[}
= max(0, y − 0.1)

HenceR↓A(1) = 0.9. Furthermore

R↓(R↓A)(1) = inf
z∈X

I(R(z, 1),max(0, z − 0.1))

= inf{max(0, z − 0.1) | z ∈]0.9, 1]} = 0.8

which shows thatR↓(R↓A) 6= R↓A. Analogously

R↑A(y) = sup
z∈X

T (A(z), R(z, y))

= max{z | z ∈ X ∧ z ∈]y − 0.1, y + 0.1[}
= min(1, y + 0.1)

henceR↑A(0) = 0.1. Furthermore

R↑(R↑A)(0) = sup
z∈X

T (min(1, z + 0.1), R(z, 0))

= sup{min(1, z + 0.1) | z ∈ [0, 0.1[} = 0.2

so R↑(R↑A) 6= R↑A.



V. CONCLUDING REMARKS

Exploiting the truly fuzzy characteristic that an element can
belong (to some degree) to different sets at the same time, we
have detected that traditional approaches to fuzzy rough set
theory overlooked a step in the fuzzification process. Under
the conditions of Proposition 14 and 15 however, the tight, the
loose and the (usual) upper approximation coincide, and so do
the tight, the loose and the (usual) lower approximation. The
observation that the consideration of other foresets thanRy
does not bring anything new if we are working with a fuzzy
T -equivalence relation and some nice fuzzy logical operators
can either be reasuring: “although we did not consider this
option in the past, no changes are required in our model, which
shows that it is solid”, but it can also be disturbing: “why
does taking into account a property which is so fundamental
to fuzzy set theory has so little impact on our model?” In the
crisp case all of the equalities in Proposition 14 and 15 hold
because the equivalence classes of a crisp equivalence relation
either coincide or are disjoint. As a result each elementy of
X belongs to exactly one equivalence class, i.e.Ry(y) = 1
and Rz(y) = 0 for all z in X such thatz 6= y. If R is
a fuzzyT –equivalence relation, in general we can no longer
make this kind of straightforward verification. However in this
case the interplay between the nice fuzzy logical operators and
the T –transitivity of R takes care of things.

Example 16 illustrated that the usual approximations and
the newly introduced one may cease to coincide if the fuzzy
relation R is not required to beT –transitive. Since in the
framework of fuzzy rough sets,R models approximate equal-
ity of objects w.r.t their attribute values, and the suitability
of the requirement ofT –transitivity for these kinds of fuzzy
relations can be questioned (to say the least) because of their
incompatibility with the Poincaré paradox, this certainly points
us towards an interesting direction for future research.
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