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Abstract

In this paper we study some of the
characteristics of and differences be-
tween the evaluation structures of
intuitionistic fuzzy set theory (“tri-
angle”) and fuzzy four-valued or Bel-
nap logic (“square”).
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1 Introduction

Intuitionistic fuzzy set theory [1, 2] is an ex-
tension of Zadeh’s fuzzy set theory in which
to any element u in the universe U not
only a membership degree µ but also a non-
membership degree ν is assigned. In fuzzy
set theory the non-membership degree is as-
sumed to be equal to one minus the mem-
bership degree, in intuitionistic fuzzy set the-
ory only the weaker constraint ν ≤ 1 − µ
is enforced. The amount of indeterminacy,
or “missing information”, is modelled by the
number π = 1− µ− ν.

Just like the relationship between classical
logic and set theory was exploited in fuzzy
set theory to define “fuzzy logics” (in a nar-
row sense), so we may also introduce a no-
tion of “intuitionistic fuzzy logics”: with a
proposition p a degree of truth µ(p) and a
degree of falsity ν(p) is associated, such that
µ(p) + ν(p) ≤ 1. This idea is elaborated in
e.g. [3].

It should be mentioned that the term “intu-
itionistic” is to be read in a “broad” sense
here, alluding loosely to the denial of the law
of the excluded middle on element level (since
µ(p) + ν(p) < 1 is possible). A “narrow”,
graded extension of intuitionistic logic proper
has also been proposed and is due to Takeuti
and Titani [13]. It bears no relationship to the
notion of intuitionistic fuzzy logic described in
this paper.

Intuitionistic fuzzy logic can be generalized by
dropping the restriction µ(p) + ν(p) ≤ 1, and
instead draw (µ(p), ν(p)) from [0, 1]2. This
extension is called fuzzy four-valued logic or
fuzzy Belnap logic, as it extends the logi-
cal evaluation structure FOUR introduced by
Belnap [4] and shown in Figure 1.

Figure 1: Belnap’s logical evaluation
structure FOUR.

In FOUR we have four epistemic states
true (T ), false (F ), unknown (U) and
contradiction (C) that can represent an
agent’s beliefs with respect to the truth of a
proposition. By mapping the epistemic states



on the angular points of the unit square as
follows: T → (1, 0), F → (0, 1), U → (0, 0)
and C → (1, 1), and by drawing values from
the entire unit square, we obtain fuzzy four-
valued logic. Since also in intuitionistic fuzzy
logic, true corresponds to (1, 0), false to
(0, 1) and unknown to (0, 0), and since by
the restriction of truth and falsity degrees the
state contradiction is not allowed, it is clear
that its evaluation structure is a triangle that
takes up only (the consistent) half of the unit
square. This is also discussed in [5].

In this paper, we compare the evaluation
structures of intuitionistic fuzzy logic and
fuzzy four-valued logic from a mathemati-
cal point of view. The respective evaluation
structures “triangle” and “square” will be
viewed as particular complete lattices. This
allows us to define graded versions of the logi-
cal connectives (negators, t-norms, t-conorms
and implicators generalizing classical nega-
tion, conjunction, disjunction and implication
respectively). We show that both structures
are mathematically different and we will em-
phasize this observation by showing that the
graded connectives exhibit different proper-
ties in both structures.

2 The lattice L∗

Consider the set L∗ (see Figure 2) and order
relation ≤L∗ defined by:

L∗ = {(x1, x2) | (x1, x2) ∈ [0, 1]2

and x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2,

∀(x1, x2), (y1, y2) ∈ L∗.

Then (L∗,≤L∗) is a complete lattice [10]. We
denote its units by 0L∗ = (0, 1) and 1L∗ =
(1, 0).

Note that if, for x = (x1, x2), y = (y1, y2) ∈
L∗, (x1 < y1 and x2 < y2) or (x1 > y1 and
x2 > y2), then x and y are incomparable w.r.t
≤L∗ , denoted as x‖L∗y.

From now on, we will assume that if x ∈ L∗,
then x1 and x2 denote respectively the first
and the second component of x, i.e. x =

Figure 2: The shaded area constitutes
the set L∗.

(x1, x2).

We also define the following set for further
use: D = {x | x ∈ L∗ and x1 + x2 = 1}, and
the first and second projection mapping pr1
and pr2 on L∗, defined as pr1(x1, x2) = x1

and pr2(x1, x2) = x2, for all (x1, x2) ∈ L∗.

Define the set L� (see Figure 3) and order
relation ≤� as

L� = [0, 1]2,

(x1, x2) ≤� (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2,

∀(x1, x2), (y1, y2) ∈ L�.

Figure 3: The shaded area constitutes
the set L�.

Then (L�,≤�) is a complete lattice. Note
that its units are equal to the units of L∗:
0� = 0L∗ and 1� = 1L∗ .

Similarly as in L∗, if for x = (x1, x2), y =
(y1, y2) ∈ L∗ it holds that (x1 < y1 and x2 <
y2) or (x1 > y1 and x2 > y2), then x and y
are incomparable w.r.t ≤�, denoted as x‖�y.



Theorem 2.1 There does not exist an order-
isomorphism between the lattices (L∗,≤L∗)
and (L�,≤�), i.e. there does not exist a bi-
jection Φ from L∗ to L� such that x ≤L∗ y ⇔
Φ(x) ≤� Φ(y), for all x, y ∈ L∗.

In spite of the fact that L∗ ⊆ L�, the order-
ing is the same and the units are the same,
from Theorem 2.1 it follows that (L∗,≤L∗)
and (L�,≤�) have a different structure. In
the rest of the paper we will illustrate this dif-
ference by contrasting operations on L∗ and
L� and their respective properties.

3 Negators

Definition 3.1 A negator on L∗ is any de-
creasing mapping N : L∗ → L∗ satisfy-
ing N (0L∗) = 1L∗ and N (1L∗) = 0L∗. If
N (N (x)) = x, for all x ∈ L∗, then N is called
an involutive negator.

Note that the mapping Ns defined by
Ns(x1, x2) = (x2, x1), for all (x1, x2) ∈ L∗,
is an involutive negator on L∗. We will call
Ns the standard negator on L∗. The following
theorem was established in [9].

Theorem 3.1 [9] Let N be a negator on L∗

and let the [0, 1] → [0, 1] mapping N be de-
fined by N(a) = pr1N (a, 1 − a), for all a ∈
[0, 1. Then N is involutive if and only if N is
involutive and for all x ∈ L∗:

N (x) = (N(1− x2), 1−N(x1)).

Definition 3.2 A negator on L� is any de-
creasing mapping N : L� → L� satisfying
N(0�) = 1� and N(1�) = 0�. If N(N(x)) =
x, for all x ∈ L�, then N is called an involu-
tive negator.

Lemma 3.1 For any involutive negator N on
L� one of the following holds:

(i) N(0, 0) = (0, 0) and N(1, 1) = (1, 1); or

(ii) N(0, 0) = (1, 1) and N(1, 1) = (0, 0).

Theorem 3.2 Let N be a negator on L�.

(i) If N(0, 0) = (0, 0), then let ϕ be the
[0, 1] → [0, 1] mapping defined as ϕ(a) =

pr1 N(0, a), for all a ∈ [0, 1]. Then N is
involutive if and only if ϕ is an increasing
permutation of [0, 1] and, for all x ∈ L�,

N(x) = (ϕ(x2), ϕ−1(x1)).

(ii) If N(0, 0) = (1, 1), then let N1 and N2

be the [0, 1] → [0, 1] mappings defined
as N1(a) = pr1 N(a, 0) and N2(a) =
pr2 N(0, a), for all a ∈ [0, 1]. Then N

is involutive if and only if N1 and N2 are
involutive negators on [0, 1] and, for all
x ∈ L�,

N(x) = (N1(x1), N2(x2)).

If in the first case ϕ(x1) = x1, for all x1 ∈
[0, 1], then we obtain N(x) = (x2, x1), i.e.
the straightforward extension of the standard
negator Ns on L∗ to L�. We denote this nega-
tor by N1

s. If in the second case N1(x1) =
N2(x1) = 1 − x1, for all x1 ∈ [0, 1], then we
obtain N(x) = (1 − x1, 1 − x2). We denote
this negator by N2

s.

Let in Theorem 3.2 N(a) = ϕ(1 − a), for all
a ∈ [0, 1]. Then N is a bijective negator on
[0, 1] and N(x) = (N(1 − x2), 1 − N−1(x1)),
for all x ∈ L�. While for negators on L∗ the
corresponding negator N is involutive, this is
not necessarily the case for negators on L�.
Note also that the case (ii) in Theorem 3.2
cannot occur in L∗.

It is noteworthy that in [11] the mapping N1
s

is called strong negation and the mapping N2
s

is referred to as a complementation.

We show another difference between (L∗,≤L∗)
and (L�,≤�) by investigating the presence of
a Kleene negator in both lattices.

Definition 3.3 Let (L,∨,∧, 0, 1) be a dis-
tributive bounded lattice. An mapping N :
L → L is called a Kleene negator if and only
if, for all a, b ∈ L:

(K1) a = N(N(a)),

(K2) N(a ∨ b) = N(a) ∧N(b),

(K3) a ∧N(a) ≤ b ∨N(b).



Assume there exists a Kleene negator N on
L∗, then by (K1) N is involutive. From The-
orem 3.1 it follows that there exists an invo-
lutive negator N on [0, 1] such that, for all
x ∈ L∗,

N (x) = (N(1− x2), 1−N(x1)).

Hence (K3) is equivalent to, for all a, b ∈ L∗,

(min(a1, N(1− a2)), max(a2, 1−N(a1)))
≤L∗ (max(b1, N(1− b2)), min(b2, 1−N(b1))).

Let a = (0.5, 0.5) and b = (0, 0), then we ob-
tain (min(0.5, N(0.5)), max(0.5, 1 − N(0.5)))
≤L∗ (0, 0), which implies N(0.5) = 0. From
the involutivity of N it follows 0.5 = N(0) =
1, which is a contradiction. Hence there does
not exist a Kleene negator on L∗.

We now consider the negator N2
s on L�, then

(K3) is equivalent to, for all a, b ∈ L�,

(min(a1, 1− a1), max(a2, 1− a2))
≤� (max(b1, 1− b1), min(b2, 1− b2)).

Since min(a1, 1 − a1) ≤ 1
2 ≤ max(b1, 1 − b1)

and similarly for the second component, it fol-
lows that N2

s is a Kleene negator on L�.

4 Triangular norms and conorms

Definition 4.1 [8, 9] A triangular norm (t-
norm) on L∗ is a commutative, associative,
increasing mapping T : (L∗)2 → L∗ such that
T (1L∗ , x) = x, for all x ∈ L∗.

A triangular conorm (t-conorm) on L∗ is a
commutative, associative, increasing mapping
S : (L∗)2 → L∗ such that S(0L∗ , x) = x, for
all x ∈ L∗.

Some examples of t-norms and t-conorms on
L∗ are, for x, y ∈ L∗:

(i) inf(x, y) = (min(x1, y1), max(x2, y2)),

(ii) Tw(x, y) = (max(0, x1 + y1 − 1), min(1,
x2 + y2)),

(iii) Sw(x, y) = (min(1, x1 + y1), max(0, x2 +
y2 − 1)),

(iv) TW (x, y) = (max(0, x1 + y1 − 1), min(1,
x2 + 1− y1, y2 + 1− x1)),

(v) SW (x, y) = (min(1, x1+1−y2, y1+1−x2),
max(0, x2 + y2 − 1)).

Note that both Tw and TW are extensions to
L∗ of the  Lukasiewicz t-norm TW on [0, 1] de-
fined by TW (x, y) = max(0, x + y − 1), for all
x, y ∈ [0, 1].

Definition 4.2 A triangular norm (t-norm)
on L� is a commutative, associative, increas-
ing mapping T : (L�)2 → L� such that
T(1�, x) = x, for all x ∈ L�.

A triangular conorm (t-conorm) on L� is a
commutative, associative, increasing mapping
S : (L�)2 → L� such that S(0�, x) = x, for
all x ∈ L�.

Some examples of t-norms on L� are, for
x, y ∈ L�:

(i) inf(x, y) = (min(x1, y1), max(x2, y2)),

(ii) TW (x, y) = (max(0, x1 + y1 − 1), min(1,
x2 + y2)),

(iii) SW (x, y) = (min(1, x1 + y1), max(0, x2 +
y2 − 1)).

Note that the mapping T defined by T(x, y) =
(max(0, x1 + y1 − 1), min(1, x2 + 1 − y1, y2 +
1− x1)), for all x, y ∈ L�, is not a t-norm on
L� since T(1�, y) = (y1, min(y2, 1 − y1)) 6= y
as soon as y2 > 1− y1. Idem for the analogon
of SW .

Definition 4.3 [8, 9] A t-norm T (resp. a t-
conorm S) on L∗ is called t-representable iff
there exist a t-norm T and a t-conorm S on
[0, 1] such that, for all x, y ∈ L∗,

T (x, y) = (T (x1, y1), S(x2, y2)),
(resp. S(x, y) = (S(x1, y1), T (x2, y2))).

We note T = (T, S) (resp. S = (S, T )).

Similarly, t-representability can be defined for
t-norms and t-conorms on L�. Examples of t-
representable t-norms and t-conorms are inf,
Tw, Sw, TW and SW . Note that TW and SW

are not t-representable.



Definition 4.4 The dual of a t-norm T
(resp. t-conorm S) on L∗ w.r.t. a negator N
on L∗ is the mapping T ∗ (resp. S∗) defined
by, for x, y ∈ L∗,

T ∗(x, y) = N (T (N (x),N (y))),
(resp. S∗(x, y) = N (S(N (x),N (y)))).

The dual of a t-norm or t-conorm on L� is
defined in a similar way.

For example, Sw is the dual of Tw w.r.t. Ns,
SW is the dual of TW w.r.t. Ns, and SW is
the dual of TW w.r.t. both N1

s and N2
s.

5 Implicators

Definition 5.1 [6, 8] An implicator on L∗ is
a mapping I : (L∗)2 → L∗ such that

I(0L∗ , 0L∗) = 1L∗ , I(0L∗ , 1L∗) = 1L∗ ,

I(1L∗ , 1L∗) = 1L∗ , I(1L∗ , 0L∗) = 0L∗ ,

and such that I(., x) is decreasing and I(x, .)
increasing, for all x ∈ L∗.

There are two important subclasses of impli-
cators on L∗.

Definition 5.2 [6, 8] Let S be a t-conorm on
L∗ and N a negator on L∗. The S-implicator
generated by S and N is the mapping IS,N
defined as, for x, y ∈ L∗:

IS,N (x, y) = S(N (x), y).

Definition 5.3 [6, 8] Let T be a t-norm on
L∗. The residual implicator (R-implicator)
generated by T is the mapping IT defined as,
for x, y ∈ L∗:

IT (x, y)
= sup{γ | γ ∈ L∗ and T (x, γ) ≤L∗ y}.

Some examples of S- and R-implicators on L∗

are, for x, y ∈ L∗:

(i) Iinf(x, y)

=


1L∗ , if x1 ≤ y1 and x2 ≥ y2,

(1− y2, y2), if x1 ≤ y1 and x2 < y2,

(y1, 0), if x1 > y1 and x2 ≥ y2,

(y1, y2), if x1 > y1 and x2 < y2;

(ii) ITw(x, y) = (min(1, y1+1−x1, x2+1−y2),
max(0, y2 − x2));

(iii) ISw,Ns(x, y) = (min(1, x2 + y1), max(0,
x1 + y2 − 1));

(iv) ITW
(x, y) = ISW ,Ns(x, y) = (min(1, y1 +

1− x1, x2 + 1− y2), max(0, y2 + x1 − 1)).

From fuzzy set theory we know that the S-
implicator generated by the dual of TW and
Ns (where Ns is defined as Ns(x) = 1−x, for
all x ∈ [0, 1]) is equal to the R-implicator of
TW . From the above it follows that a sim-
ilar result holds for the non-t-representable
extension TW of TW to L∗, but not for its
t-representable extension Tw.

Definition 5.4 An implicator on L� is a
mapping I : (L�)2 → L� such that

I(0�, 0�) = 1�, I(0�, 1�) = 1�,

I(1�, 1�) = 1�, I(1�, 0�) = 0�,

and such that I(., x) is decreasing and I(x, .)
increasing, for all x ∈ L�.

The notions of S-implicator and R-implicator
on L� are defined in a similar way as in L∗.
Unlike in L∗ the R-implicator generated by
the t-representable extension TW of TW to L�

is equal to the S-implicator generated by SW

and N2
s:

ITW
(x, y) = ISW ,N2

s
(x, y)

= (min(1, y1 + 1− x1), max(0, y2 − x2)).

This implicator is however not equal to the
S-implicator generated by SW and N1

s, which
is given by, for x, y ∈ L�, ISW ,N1

s
(x, y) =

(min(1, x2 + y1), max(0, x1 + y2 − 1)).

6 The residuation principle

We say that a t-norm T on L∗ satisfies the
residuation principle if and only if, for all
x, y, z ∈ L∗,

T (x, z) ≤L∗ y ⇔ z ≤L∗ IT (x, y).

The residuation principle for t-norms on L�

can be introduced in a similar way. For in-
stance, the t-norms inf, Tw, TW and TW all
satisfy the residuation principle.



De Baets and Mesiar proved in [7] that if a
t-norm T on a complete lattice L = L1 × L2

satisfies the residuation principle, then T is
the direct product of two t-norms on L1 and
L2 respectively. This result can be translated
in our terminology as follows.

Theorem 6.1 Any t-norm T on L� satis-
fying the residuation principle is t-represen-
table.

Note that this result does not hold in L∗: TW

satisfies the residuation principle but is not
t-representable!

7 Axioms of Smets and Magrez

The suitability of implicators for a variety of
purposes can be assessed using the criteria in-
troduced by Smets and Magrez in [12]. In [6]
these axioms have been generalized to L∗ as
follows.

Definition 7.1 (Axioms of Smets and
Magrez for an implicator I on L∗)

(A.1) (∀y ∈ L∗)(I(., y) is decreasing)
(∀x ∈ L∗)(I(x, .) is increasing)
(monotonicity laws)

(A.2) (∀x ∈ L∗)(I(1L∗ , x) = x) (neutral-
ity principle)

(A.3) (∀(x, y) ∈ (L∗)2)(I(x, y) = I(NI(y),
NI(x)) (contrapositivity)

(A.4) (∀(x, y, z) ∈ (L∗)3)(I(x, I(y, z)) =
I(y, I(x, z))) (interchangeability
principle)

(A.5) (∀(x, y) ∈ (L∗)2)(x ≤L∗ y ⇔ I(x, y)
= 1L∗) (confinement principle)

(A.6) I is a continuous (L∗)2 → L∗ map-
ping (continuity)

In (A.3) NI denotes the negator on L∗ in-
duced by I, defined as NI(x) = I(x, 0L∗), for
all x ∈ L∗.

The Smets-Magrez axioms for implicators on
L� are introduced in a similar way. In [6] it is
proven that ITW

satisfies all six Smets-Magrez
axioms. Furthermore no S-implicator gener-
ated by a t-representable t-conorm and no R-

implicator generated by a t-representable t-
norm satisfies all six axioms. On the other
hand, in L� we have that ITW

satisfies all
Smets-Magrez axioms (and ISW ,N1

s
does not).

In other words, t-representability plays very
different roles in L∗ and L�.

8 Conclusion

Intuitionistic fuzzy logic and fuzzy four-
valued fuzzy logic are closely related from a
semantical point of view. However the under-
lying mathematical structures (respectively
the “triangle” L∗ and the “square” L�) are
not order-isomorphic. We constructed a rep-
resentation for involutive negators on L� and
showed the differences with the representation
for involutive negators on L∗. We extended
the  Lukasiewicz t-norm to a t-representable
t-norm on L� which satisfies similar proper-
ties. On the other hand the extension of the
 Lukasiewicz t-norm to L∗ which satisfies simi-
lar properties is not t-representable. No resid-
ual implicator generated by a t-representable
t-norm on L∗ satisfies all Smets-Magrez ax-
ioms, but on L� there exists a t-representable
t-norm whose residual implicator does. Fi-
nally we showed that there does not exist a
Kleene negator on L∗, but there exists one on
L�. These observations confirm that L∗ and
L� are totally different structures from the
mathematical point of view.
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