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Abstract

We confront two models that extend
Zadeh’s fuzzy set theory: intuitionis-
tic fuzzy set theory and interval-valued
fuzzy set theory. Our exposition recalls
the syntactical relationships, in terms
of L—fuzzy sets, that link these exten-
sions and articulates the semantical fac-
tors that distinguish them.
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1 Some Background

Since its introduction in the sixties [23], fuzzy set
theory has rapidly acquired an immense popular-
ity as a formalism for the representation of im-
precise, linguistic information: a vague concept
is described by a membership function attribut-
ing to all elements of a given universe X a degree
of membership in a fuzzy set. Since membership
functions map X to the interval [0,1] and there-
fore imply a linear, i.e. total, ordering of these el-
ements, one could argue that this makes them in-
adequate to deal with incomparable information.
A possible solution, however, was already implicit
in Zadeh’s seminal paper [23]: in a footnote, he
mentioned that “in a more general setting, the
range of the membership function can be taken
to be a suitable partially ordered set P.” In 1967,
Goguen [14] formally introduced the notion of an
L—fuzzy set with a membership function taking
values in a lattice L.

Interval-valued fuzzy sets (IVFSs, for short), ap-
parently first studied by Sambuc [20] who called
them ®-flou functions, serve to capture a fea-
ture of uncertainty w.r.t. the assignment of mem-
bership degrees. =~ While many interpretations
exist [17], the central idea is to replace crisp,
[0, 1]-valued membership degrees by intervals in
[0,1], understood to contain the true, incom-
pletely known membership degree.! In the words
of Gehrke et al. [12],“Many people believe that
assigning an exact number to an expert’s opin-
ion 1s too restrictive, and that the assignment of
an interval of values is more realistic.” There is
an interesting parallel with imprecise probability
theory, where crisp probabilities are replaced by
intervals bounded by an upper and a lower prob-
ability (see e.g. Walley [22]).

Finally, intuitionistic fuzzy sets (IFSs, for short)
were introduced in 1983 by Atanassov [1]. IFS
theory basically defies the claim that from the
fact that an element z “belongs” to a given de-
gree (say pa(z)) to a fuzzy set A, naturally fol-
lows that x should “not belong” to A to the extent
1 — pa(z), an assertion implicit in the concept of
a fuzzy set. On the contrary, IFSs assign to each
element of the universe both a degree of mem-
bership p4(z) and one of non-membership v4(z)
such that pa(z)+va(z) < 1, thus relaxing the en-
forced duality v4(xz) = 1 — pa(x) from fuzzy set
theory. Imagine, for instance, a voting procedure
in which delegates have to express their feelings
w.r.t. a number of proposals. It is obvious that
while one can be in favour or in disfavour of a
proposal to a certain extent, one can also abstain

!As a consequence, the membership function p is re-
placed by a couple (i, pu) such that p; C po.



(partially or totally) from the vote; an attitude
inspired by, e.g., a lack of background or inter-
est, or simply because no obvious arguments for
or against the cause at stake have been raised. In
such a situation, using only a [0, 1]-valued degree
expressing support for the proposal is arguably
too committing, and we should be duly hesitant
to classify him as a supporter or an opponent of
the proposal. IFSs circumvent this problem by
allowing one to address the positive and the neg-
ative side of an imprecise concept separately, and
by not insisting that these assessments be exactly
complementary [6].

2 Syntactical Relationships

In this section, we recall some known results
from [8]. Let (L, <) be a complete lattice. Then
Goguen [14] defined an L-fuzzy set in X as an
X — L mapping. Putting e.g. L* = {(z1,22) €
[Oa 1]2 | z1 + 22 < 1}1 (.’131,.’1,‘2) <t (ylayQ) Aad
1 < y1 and x9 > yo, one can easily verify that
(L*,<r+) is a complete lattice, and also that the
class of IFSs is isomorphic to that of L*—fuzzy
sets. Hence, IFSs emerge, syntactically, as a spe-
cific subclass of L—fuzzy sets. A graphical repre-
sentation of L*, called intuitionistic fuzzy in-
terpretation triangle, is shown in figure 1.
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(0,0) 2l (1,0)
Figure 1: The lattice L*

On the other hand, defining (Lf,<,:) as LI =
{(z1,22) € [0,1]* | 1 < 22}, (21,m2) <pr
(y1,92) © o1 < y1 and zo < yo, it is clear
that IVFSs are also specific kinds of L—fuzzy sets.
Moreover, IFSs are formally equivalent to IVFSs:
indeed, a couple (z1,z2) € L* may be mapped bi-
jectively to an interval [z1,1—x2]. Figure 2 juxta-

Figure 2: Geometrical Interpretation of a) an IFS
and b) an IVFS .

poses the common geometrical interpretations [3]
of an (equivalent) IFS and IVFS.

3 A Case for Semantical
Differentiation

Section 2 highlighted that TF'Ss and TVFSs, when
traced back to the underlying mathematical struc-
ture they are defined on, collapse to the same syn-
tactical entity. Some would consider this equiv-
alence sufficient evidence to dismiss IFS theory
as superfluous and giving cause to unnecessary
confusion. We wish to counter that allegation by
demonstrating that the theories are at the cross-
roads of two important, different traditions.

The late George Gargov, accredited with giving
intuitionistic fuzzy sets their name, argued in his
last paper [11] that two ways exist to account for
the uncertainty of knowledge?:

1. to admit either partial or contradictory mod-
els, or both

2. to consider sets of truth values (in particular,
intervals) as representatives of the temporar-
ily unknown truth value of a statement

3.1 Partial and/or Contradictory Models

The first trend is represented, in a very gen-
eral way, by the notion of a bilattice (due to
Ginsberg [13]). We introduce some terminology
adapted from Fitting [9]: a pre-bilattice is a
structure (B, <;, <)) where B is a non-empty set,

2Gargov referred explicitly to a logical setting, but it is

not difficult to extend his argument to concern imprecision
in general.



and <; and < are partial orders on B each gen-
erating on it the structure of a lattice.

These orders are used to provide methods of evalu-
ation of information. According to [11], informa-
tion about the state of affairs described or referred
to by a statement (like a membership degree as-
signment), can be characterized in two ways: by
a degree of truth (cf. <;), reflecting the truth con-
tent of the statement, and by a degree of knowl-
edge (cf. <), reflecting information definiteness.

Denote the meet and join operations w.r.t. <; as
A¢ and V;, and those w.r.t. < as Ap and V.
(B, <y, <) is a bilattice? if each of Ay, V¢, Ay and
Vi is monotone w.r.t. both orderings. The in-
tended meaning of these requirements is that we
insist e.g. that the truth content of a union of in-
formation about two statements does not decrease
with the increase of knowledge. [11] A bilattice is
distributive if all twelve possible distributive laws
involving A¢, Vi, Ax and Vi hold.

An example of a distributive bilattice is ([0, 1]?,
<t, <g), where (71,91) <¢ (T2,72) <= 71 < 72
and y1 > yo, and (z1,y1) <i (T2,72) &= 1 <
zo and y; < yo. The first component gives a
positive degree (of truth, or membership), while
the second gives a negative degree (of falsity, or
non-membership). By defining the correspon-
dences T' — (1,0), F — (0,1), U — (0,0) and
C — (1,1), this structure also emerges as the
“fuzzified” version of Belnap’s four—valued para-
consistent logic [5], with truth values true (T),
false (F), unknown (U) and contradiction (C),
shown in figure 3.

The structure has proven very relevant in
e.g. decision—making problems; first steps to ac-
count for preferential information under the form
of positive and negative arguments with graded
relevance were taken in [19] and [10]. It is obvi-
ously also related to the framework of IF'S theory,
both syntactically and in terms of intended se-
mantics. Specifically, we may define an operation
called conflation on a bilattice, i.e. an involutive
B — B mapping C that reverses the <; ordering
but leaves the <; ordering unchanged. We say
that = € B is consistent if z <j C(x) and that z

3Unfortunately, neither Gargov nor Fitting gave a rigid
definition of a bilattice. What we call a bilattice here is
referred to as an “interlaced bilattice” by those authors.
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Figure 3: Belnap’s bilattice

is ezact if x = C(z). It can easily be seen that if
C(xz1,29) = (1—x9,1—x1), L* is the set of consis-
tent elements of ([0, 1]?, <1, <2), while [0, 1] is the
set of exact elements. Elements (z1,72) € [0,1]2
such that z; + zo > 1 (which in other words are
inconsistent to some extent) are not considered in
intuitionistic fuzzy set theory.

Incidentally, having in mind the fact from [4] that
we can construct a bijection between the square
with vertices (0,0), (1,0),(1,1) and(0,1), and the
IF'S interpretation triangle L*, we may assert that
each L—fuzzy set with a lattice L that can be rep-
resented in the form of figure 3, can be represented
as an IFS, too.

From a philosophical point of view, Smaran-
dache’s promising new theory (with ancient roots)
of neutrosophy [21] embraces a similar fundamen-
tal point of tripartition in sampling information:
truth, falsity and indeterminacy have to be ad-
dressed. It even surpasses the bilattice setting
because no relationship is required in general be-
tween these three components. In Smarandache’s
words: “Every idea < A > tends to be neutralized,
diminished, balanced by < Non-A > ideas (not
only < Anti-A > as Hegel asserted)—as a state
of equilibrium.” We expect that these ideas, once
properly formalized, will have a profound impact
on our future dealings with imprecision.

3.2 Intervals and Beyond

Section 1 already mentioned several authors’ dis-
approval of the practice of assigning crisp mem-
bership degrees to define an imprecise concept. To



fix these degrees only partially, e.g. by means of an
interval or, to stick with Gargov, by arbitrary sub-
sets of the evaluation space, alleviates that prob-
lem. Unsurprisingly, however, critics may argue
that assessing e.g. exact interval borders is hard to
justify. Nguyen et al. [17] suggested a notion of in-
tervals “with intervally uncertain bounds”, i.e. the
borders of the intervals are themselves character-
ized by intervals. To go one step further is to
allow fuzzy sets in [0, 1] as membership degrees:
this is the setting of type 2 fuzzy set theory (see
e.g. [15]). In general, higher—order fuzziness al-
lows us to be more and more “fuzzy” about the
assigment of membership degrees, a practice that
has been likened to assessing the moments of a
probability density function [16].

3.3 At the Crossroads of
Imprecision—Which Way to Go?

As argued in the preceeding subsections, IFS and
IVFS theory should ideally be associated with
their respective traditions (“paradigms”) of bi-
lattices (focusing on knowledge/truth interplay,
and positive/negative balance) on one hand, and
of pursuing higher—order fuzziness on the other
hand. In practice, the line is not always drawn
so rashly. Nguyen et al. [17] appear not to distin-
guish at all between the two concepts and, most
strikingly perhaps, Gargov himself is not entirely
strict in putting a label on IFS theory. According
to us, the truth is, these theories are located at
a crossroads of imprecision—handling strategies, a
base from which to move on to even more chal-
lenging directions; lifting the restriction on the
sum of membership and non—-membership values
to obtain the fuzzy four—valued framework of [10]
is one option, the definition of interval-valued in-
tuitionistic fuzzy sets [2] is another one (and pro-
vides at once a marvellous combination of all we
have discussed so far). It is precisely by these ex-
tensions that the need for separate paradigms to
express different facets of imprecise information
becomes obvious. For instance, intervals are ill-
suited to the representation of partially conflicting
information, as e.g. writing [0.5, 0.4] is something
of an awkward notation as compared to the alter-
native notation as a couple, i.e. (0.5,0.6)—where
the first and second component quote beliefs in
favour and disfavour of a statement, respectively.

On the other hand, we do plead to strengthen ties
between scientific communities to gain deeper un-
derstanding of our joint goal, which is to process
imprecise information efficiently. On the syntac-
tical level, this means abstraction from outward
appearances; the approach in terms of L—fuzzy
sets advocated in section 2 seems cut out for the
job. As an example, we may quote the definition
of logical implication in the setting of both IFS
and IVFS theory which was the object of [7]. On
the semantical level, a cross—fertilization of, and
dialogue between, logic, artificial intelligence and
philosophy will likely further our cause most.

4 Conclusion

The extensive research being done on both TFSs
and IVFSs (a recent survey [18] lists over 400 pub-
lications in the domain of IFS theory alone, and
the number is still growing fastly) shows a mount-
ing interest in these models which unfortunately
is not parallelled by an according amount of sci-
entific recognition. This paper has attempted to
mend that situation by promoting the exploita-
tion of their syntactical equivalence via a treat-
ment in terms of L—fuzzy sets, and by identify-
ing some essential semantical differences in their
underlying motivation, differences that become
clearest when we try to find suitable extensions
for them. For this reason, choosing to maintain
both the IFS and IVFS labels hardly engenders
unnecessary proliferation of terminology, as some
critics claim.
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