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The task of finding shortest paths in weighted graphs is one of the archetypical problems encoun-
tered in the domain of combinatorial optimization and has been studied intensively over the past
five decades. More recently, fuzzy weighted graphs, along with generalizations of algorithms
for finding optimal paths within them, have emerged as an adequate modeling tool for prohibi-
tively complex and/or inherently imprecise systems. We review and formalize these algorithms,
paying special attention to the ranking methods used for path comparison. We show which cri-
teria must be met for algorithm correctness and present an efficient method, based on defuzzifi-
cation of fuzzy weights, for finding optimal paths. © 2004 Wiley Periodicals, Inc.

1. INTRODUCTION

In many transportation, routing, communications, economical, and other appli-
cations, graphs emerge naturally as a mathematical model of the observed real-
world system. Indeed, many problems can be reformulated as a quest for a path
(between two nodes in a graph) which is optimal in the sense of a number of preset
criteria. Very often, these optimality criteria are evaluated in terms of weights, that
is, vectors of real numbers, associated with the links of the graph. Numerous algo-
rithms (for a comprehensive introduction, see, e.g., Ref. 1) have been developed
to ease this and related quests.

In practice, due to the sheer number of optimization criteria they impose,
realistic environments are often so complex that even the most sophisticated imple-
mentations become computationally unmanageable. For instance, in the context of
computer networking, Arnold et al.2 report that “in all common shortest path rout-
ing strategies only one parameter is used as routing information” (while many
more are available, and relevant). To circumvent this limitation, they designed
a fuzzy-rule-based system as a flexible way to evaluate and aggregate several
parameters of a network link into a single, crisp link weight. In Ref. 3, Aboelela
and Douligeris face a similar problem in path optimization for B-ISDN networks
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according to various quality of service (QoS) requirements. To obtain good com-
promise solutions with comparatively little computational effort, they used a fuzzy
rule base to evaluate the quality of a number of previously found candidate paths.

The above solutions are both heuristic in a sense that they resort to fuzzy
techniques as a trade-off between efficiency and precision: They sacrifice the rigor
of the original optimization problem in favor of the flexibility and tolerance for
imprecision provided by fuzzy set theory to obtain decent, workable solutions.
Nothing prevents us, however, from going one step further and reformulating the
shortest path problem itself as a fuzzy optimization problem: Indeed, by allowing
that the crisp link weights expressing optimization criteria are replaced by fuzzy
numbers (fuzzy weights), and by using the operations of fuzzy arithmetic (addi-
tion, multiplication, comparison, etc.), our problem becomes one of finding a fuzzy
shortest path. This option has been considered early on and was first formalized
by Dubois and Prade4,5 ; it has since been taken up repeatedly in the literature (see,
e.g., Refs. 6–9).

In this article, from a formal viewpoint we study the correctness and the effi-
ciency of the fuzzy (multicriteria) shortest path problem. In Section 2, we first recall
some basic notions about fuzzy numbers and fuzzy weighted graphs. Section 3 is
dedicated to fuzzy ranking methods, which play a key role in our further expo-
sition. Next, Section 4 spells out the details of two generic labeling algorithms
(inspired by the work of Martins et al.10 ) for solving the fuzzy shortest path prob-
lem, and illustrates them by a simple numerical example. In Section 5, we highlight
the importance of the ranking method used to compare (fuzzy objective values of )
paths, introducing and proving the conditions it should satisfy to maintain algo-
rithm correctness. It turns out that only a limited number of the available ranking
methods can be used in practice. Finally, in Section 6, we study the particular case
of a fuzzy shortest path problem solved by a ranking method based on defuzzifica-
tion. We prove that under certain conditions this choice of ranking method leads to
a significant efficiency boost. Moreover, we show that the excessive accumulation
of uncertainty in the final result that the authors of Ref. 2 considered an argument
against fuzzy shortest path implementations and that tempted them to dismiss the
whole approach as impractical, in fact, does not inflict our proposal.

2. PRELIMINARY DEFINITIONS

2.1. Fuzzy Quantities, Fuzzy Numbers, and LR-Fuzzy Numbers

A fuzzy quantity is defined as a fuzzy set in the real line R, that is, an R r
@0,1#mapping A. If A is upper semicontinuous,a convex,b normal,c and has bounded
support,d then it is called a fuzzy number.

aA is upper semicontinuous ? ~∀a � R!~∀e � 0!~∃d � 0!~∀x � R!~6x � a 6 �
d ] A~x! � A~a! � e!.

bA is convex ? ~∀x1, x2 � R!~∀l � @0,1#!~A~lx1 � ~1 � l!x2! � min~A~x1!, A~x2!!!
cThe kernel of A, Ker~A! is defined by Ker~A! � $x � R6A~x! � 1%. A is normal iff its

kernel is nonempty.
dThe support of A, Supp~A!, is defined by Supp~A! � $x � R6A~x! � 0% .
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If A and B are fuzzy quantities, their sum A � B and product A � B are
defined by Zadeh’s extension principle. For z � R,

~A � B!~z! � sup
x�R

min~A~x!, B~z � x!!

~A � B!~z! � sup
x�R\$0%

min�A~x!, B� z

x
��

The c-level set Ac of a fuzzy quantity A is the subset of the reals whose mem-
bership value to A is at least c � #0,1# : Ac � $x � R6A~x! � c% .

In practice, it is common to make some a priori assumptions about the shape
of the fuzzy numbers that will be used in an application. To this end, it is instruc-
tive to consider LR-fuzzy numbers if L and R are two decreasing @0,�`@r @0,�`@
mappings satisfying L~0! � R~0! � 1 and L~1! � R~1! � 0 and the real
numbers ml , mr ,a,b satisfy ml � mr and a,b � 0, then the LR-fuzzy number
~ml , mr ,a,b!LR is defined by

~ml , mr ,a,b!LR : Rr @0,1#

x � �
L�ml � x

a
� x � ml ,a � 0

1 x � @ml , mr #

R� x � mr

b
� x � mr ,b � 0

0 otherwise

a and b are called the left and right spreads of ~ml , mr ,a,b!LR , respectively.
When L is defined by

L: @0,�`@r @0,�`@

x � �1 � x, x � @0,1#

0, x � #1,�`@

~ml , mr ,a,b!LL is called a trapezoidal fuzzy number. As a shorthand notation, we
write ~ml , mr ,a,b!.

It can be verified that ~la , ra ,aa ,ba !LR � ~lb , rb ,ab ,bb !LR � ~la � lb ,
ra � rb , aa � ab ,ba � bb !LR . In general, the product of two LR-fuzzy numbers
is not an internal operation. This is illustrated in Figure 1 for two trapezoidal fuzzy
numbers. Finally, it can be verified that if L and R are strictly decreasing continu-
ous mappings, the c-level set of A � ~ml , mr ,a,b!LR is equal to the interval
@ml � aL�1~c!, mr � bR�1~c!# .

2.2. Fuzzy Weighted Graphs

Due to their transparent semantics in terms of set and relations, graphs have
proven rewarding candidates for generalization to a fuzzy framework, and many
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variations on the theme of a fuzzy graph exist; see, for example, Ref. 11. In this
article, we consider fuzzy weighted graphs, that is, vertices (or nodes) and edges
(or links) remain crisp, but the edge weights will be fuzzy numbers, as in Ref. 8.

A fuzzy weighted graph EG � ~V, E, Ic! consists of a set V of vertices or
nodes vi and a binary relation E of edges ek � ~vi ,vj ! � V � V; we denote
tail~ek ! � vi and head~ek ! � vj . vi is sometimes called a parent of vj , whereas
vj is a child of vi . With each edge ~vi ,vj !, a weight or cost Ici, j � Ic~vi ,vj ! �
~ Ic~vi ,vj !1, . . . , Ic~vi ,vj !r !, a vector of fuzzy numbers with r � 1, is associated.
Each fuzzy number can be seen as the evaluation of a given criterion. For simplic-
ity, and without any loss of generality, in this article we will focus on the case
r � 1.

An s, t path p in EG � ~V, E, Ic! is an n tuple p � ~e1, e2, . . . , en ! � E n such
that head~ei ! � tail~ei�1! for i � 1, . . . , n � 1 and tail~e1! � s, head~en ! � t.
P~s, t ! is the set of all s, t paths. An s, t path p is called a cycle if s � t; EG is called
acyclic if it does not contain any cycles. A special path denoted � is called
the empty path; it does not contain any edges. Suppose we have two paths in a
graph EG: p � ~v1,v2, . . . ,vnp

! and q � ~vnp
,vnp�1, . . . ,vn !. We define p�q �

~v1,v2, . . . ,vn ! and call it the concatenation of p and q in EG.
To make the notion of “fuzzy shortest path” precise, we need an objective

function Df that associates an objective value (a fuzzy number) with each path
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Figure 1. Sum and product of two trapezoidal fuzzy numbers. A � ~3,4,3,1!, B � ~5,5,5,1!.
A � B is trapezoidal, whereas A � B is obviously not.
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p � P~s, t !; it is assumed that Df ~�! � 0 and Df ~ei ! � Ic~ei !. The objective
function determines the cost criterion. For instance, if the objective function is
such that Df ~ p�q!� Df ~ p!� Df ~q! for any two paths p and q in P~s, t !, we say that
we work with the additive cost criterion. In case of the multiplicative criterion, we
have: Df ~ p�q!� Df ~ p!� Df ~q!. Other criteria (see, e.g., Ref. 1) are not considered
in this article.

For our purposes, paths will be compared based on their objective values;
therefore, we need a method �M to rank fuzzy numbers. Then, Df ~ p! �M Df ~q!
means that path p is “shorter,” or more optimal than q. We also say that p domi-
nates q; for this reason, �M is sometimes also called a dominance checking method.
More concisely, we write p �DM

q. Note that such a ranking method will not
necessarily be total, that is, Df ~ p! §M Df ~q! and Df ~q! §M Df ~ p! may occur for
distinct p and q; in this case p and q are called nondominated alternatives.

A fuzzy shortest-path algorithm finds those s, t paths that are not dominated
by other ones; so, in general, the solution will not be a single path, but rather a set
of nondominated (also called Pareto optimal) alternatives; this situation occurs
also in crisp multicriteria shortest path problems. As the next subsection points
out, many ranking methods are available. As we will demonstrate, only a few of
them are suitable for use in the fuzzy shortest-path algorithm.

3. FUZZY RANKING METHODS

As (vectors of ) numbers are often used in real-life problems to describe the
performance of alternatives with respect to given criteria, it is important to be able
to rank or compare those numerical evaluations. In the set R of real numbers,
this comparison is, of course, straightforward. More generally, a partially ordered
set (poset) is a structure ~P, �P ! consisting of a nonempty set P and a binary
relation �P � P2 such that

P.1 ~∀x � P !~x �P x! ~reflexivity)

P.2 ~∀x, y � P !~x �P y and y �P x ] x � y! ~antisymmetry)

P.3 ~∀x, y, z � P !~x �P y and y �P z ] x �P z! ~ transitivity)

The partial order �P may or may not be total, that is, ~∀x, y � P !~x �P y or
y �P x! may or may not hold; to any partial order �P , a corresponding strict
order �P can be associated: x �P y ? x �P y and x � y. Given a subset A � P,
a minimal element of A in ~P, �P ! is a � A such that ¬~∃b � A!~b �P a!.

As an example, consider the set Rk of real vectors of length k. One of the
ways to equip Rk with a partial order is to define ~ p1, . . . , pk ! �Rk ~q1, . . . ,qk !?
~∀i � $1, . . . , k%!~ pi � qi !. A total order on Rk is �L , the lexicographical order,
defined by ~ p1, . . . , pk ! �L ~q1, . . . ,qk ! ? ~ p1, . . . , pk ! � ~q1, . . . ,qk ! or ~∃i �
$1, . . . , k%!~ pi � qi and ~∀j � i !~ pj � qj !!. The lexicographical order �L can be
generalized to �Ls using a permutation s of $1, . . . , k% , defined by ~ p1, . . . , pk !�Ls
~q1, . . . ,qk ! ? ~ p1, . . . , pk ! � ~q1, . . . ,qk ! or ~∃i � $1, . . . , k%!~ ps~i! � qs~i! and
~∀j � i !~ ps~ j! � qs~ j! !!. Strict versions of all these orders are readily obtained.
The following lemma will be useful later on.
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Lemma 1. If ~ p1, . . . , pk ! is a minimal element of A � Rk in ~Rk, �Ls ! , then it
is also a minimal element of A in ~Rk, �Rk ! .

In the following two paragraphs, we review some of the solutions proposed
in the literature to the ranking of (LR-)fuzzy numbers. Basically, two approaches
exist: The first one is faithful to the poset framework (and generates a nontotal
partial order), whereas the second one compares fuzzy numbers indirectly using
the total order in R; the corresponding ranking methods are not partial orders,
however.

3.1. A Partial Order for Fuzzy Numbers

Just like addition and multiplication, the minimum is a binary operation on R

and hence can be generalized to fuzzy quantities using the extension principle. For
fuzzy quantities A and B, Hmin~A, B! is defined by, for z � R,

Hmin~A, B!~z! � sup
z�min~x, y!

min~A~x!, B~ y!!

Okada and Soper8 used this “fuzzy minimum” to construct a relation �O ,
defined for fuzzy numbers A and B by A �O B ? Hmin~A, B! � A. Ramik and
Rimanek9 proved that �O is a partial order on the set of fuzzy numbers, and also
that A �O B ? ~∀c � #0,1# !~ inf Ac � inf Bc and sup Ac � sup Bc !. Moreover,
if A � ~la , ra ,aa ,ba !LR and B � ~lb , rb ,ab ,bb !LR , they proved that A �O B ?
~la , ra , la � aa , ra � ba ! �R4 ~lb , rb , lb � ab , rb � bb !, which allows for easy
comparison. Because �R4 is nontotal, so is �O . A total order �L for LR-fuzzy
numbers can be obtained by replacing �R4 with �Ls in the previous definition.

3.2. Ranking Methods for Fuzzy Numbers That Are Not Partial Orders

One drawback of �O and its strict version �O defined in the previous section
is that, in practice, it generates a lot of incomparabilities, that is, situations in which
neither A �O B nor B �O A holds. This can be undesirable, for example, when
this ranking method is used to compare paths in a fuzzy weighted graph, and the
decision maker is faced with an excessive number of nondominated alternatives to
choose from. The phenomenon is confirmed by the experimental results in Ref. 8,
which point out that the problem becomes more critical when there are many links
with very uncertain weights (i.e., LR-fuzzy numbers with wide left and right
spreads). To ease the problem,e one may resort to the so-called “degree
of optimism” introduced by Tanaka et al.12: Given a number h � #0,1# , define
A �h B ? ~∀a � @h,1# !~ inf Aa � inf Ba and sup Aa � sup Ba!. For
LR-fuzzy numbers with continuous L and R, this yields9 ~la , ra ,aa ,ba !LR �h

~lb , rb ,ab ,bb !LR ? ~la , ra , la � aa L�1~h!, ra � ba R�1~h!! �R4 ~lb , rb , lb �
ab L�1~h!, rb � bb R�1~h!!. Although this threshold in effect limits the number of

eOf course, one might also consider using �Ls , which by definition is total; however, this
method might be debatable because it forces the decision maker to determine, by a strict order,
the importance of the characteristics (specifically, left and right spread and left and right kernel
values) that are evaluated in comparing LR-fuzzy numbers.
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incomparable instances, the partial order structure is lost (antisymmetry P.2 does
not hold any longer).

Now, when one wants to avoid incomparabilities, another reasonable option
is to map fuzzy numbers to the real line (e.g., by computing a defuzzification or
utility value) and compare them using the total order � in R. Some caution is
necessary here: Incomparabilities can still occur in this setting because different A
and B can be mapped to the same real value! In other words, the antisymmetry
condition P.2 is violated, and hence the resulting ranking method is not a partial
order. A wide array of ranking methods based on this principle are available. As a
simple illustration of this approach, we consider four concrete instances. For a
fuzzy number A, define

Y1~A! �

�
�`

�`

xA~x! dx

�
�`

�`

A~x! dx

(1)

Y2~A! ��
0

1

M~Ac ! dc (2)

CM l~A! ��
0

1

~lac
� � ~1 � l!ac

� ! dc (3)

ADm~A! � am� (4)

where M~Ac ! denotes the middle value of (the interval) Ac , ac
� � inf Ac , ac

� �
sup Ac , l � @0,1# is a optimism–pessimism parameter that a decision maker is
free to determine, and m � #0,1# . Equations 1 and 2 are adapted from Yager’s
work13 ; adepts of fuzzy-rule-based systems will recognize in Equation 1 the very
popular center of gravity or centroid defuzzification method (see, e.g., Ref. 14).
Formula 3 is a generalization of Equation 2 and is due to Campos and Muñoz.15

Finally, Adamo16 introduced formula 4 that simply characterizes A by the right-
most point of its m cut. We can now define A �D B ? D~A! � D~B!, where
D � $Y1,Y2,CM l, ADm% . When D~A! � D~B!, we write A ;D B, that is, A and
B are nondominated alternatives.

In Ref. 17, Wang and Kerre gather known ranking methods based on this
principle, call them class I ranking methods, and examine their properties. They
furthermore distinguish two more general classes of ranking methods: In class II,
a reference set is constructed and all the fuzzy numbers to be ranked are compared
with the reference set, whereas in class III a binary fuzzy relation is used to make
pairwise comparisons of fuzzy numbers. What sets these methods apart from class I
members is that the ranking of fuzzy numbers A and B according to the former is
always considered with respect to a set A of alternatives such that A, B � A. In
particular, for a given method (say, �M !, it may well occur that A �M B on
$A, B% , but B �M A on $A, B,C% . Because in the fuzzy shortest path algorithm we
often need to compare candidate paths to a node t at a given step without knowing
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at that time about all the paths to t, such �M is a priori unfit for our purposes: The
ranking of A and B should depend only on A and B, and not on any other fuzzy
number C. Because none of the class II methods considered in Ref. 17 satisfies
this essential independency criterion, we shall not be concerned with them here.
The study of class III methods is more rewarding, so we review them briefly.

Class III ranking methods are derived from a binary fuzzy relation P on A, a
set of fuzzy numbers under consideration. Typically, P~A, B! is interpreted as a
degree to which A is greater than or equal to B. To serve as a basis for a ranking
method, P must satisfy at least the condition of acyclicity,f that is, for arbitrary
A1, . . . , An in A

~P~A1, A2 ! � P~A2, A1!, . . . , P~An�1, An ! � P~An , An�1!!

] P~A1, An !� P~An , A1! (5)

By way of illustration, we quote three valid candidate fuzzy relations due to Dubois
and Prade.18 For A and B fuzzy numbers, define

PD~A, B! � sup
x, y�R, x�y

min~A~x!, B~ y!! (6)

ND~A, B! � inf
x�R

sup
y�R, x�y

max~1 � A~x!, B~ y!! (7)

PSD~A, B! � sup
x�R

inf
y�R, y�x

min~A~x!, B~ y!! (8)

Wang19 then derived a total fuzzy ranking method from acyclic P by defining
H1 � $Ai � A6~∀Aj � A!~P~Ai , Aj ! � P~Aj , Ai !!% . If B1 � A�H1 � �,
he further defined H2 � $Ai � B16~∀Aj � B1!~P~Ai , Aj ! � P~Aj , Ai !!% and
repeated the process until Bm � �. Then, A �P B ? ~∃s, t � $1, . . . , m%!
~s � t and A � Hs and B � Ht !, and A ;P B ? ~∃s � $1, . . . , m%!~A � Hs

and B � Hs !.
An importantg result derived in Refs. 17 and 19 is the following: For any set

of fuzzy numbers A such that $A, B% � A, A �P B on A ? P~A, B! � P~B, A!
and A ;P B on A ? P~A, B! � P~B, A! hold as soon as P is a consistent fuzzy
relation, that is, for A, B, and C in A

~P~A, B! � P~B, A! and P~B,C!� P~C, B!! ] P~A,C!� P~C, A! (9)

Consistency is a stronger requirement than acyclicity. It can be verified that PD,
ND, and PSD are not consistent for arbitrary fuzzy numbers. However, PD is con-
sistent when it is applied to fuzzy numbers whose kernel is a singleton, whereas
ND and PSD are consistent if applied to fuzzy numbers with strictly monotonous
membership functions on both sides of their kernels.

fThe choice of terminology can be explained in the following way: If we draw a (crisp,
unweighted) graph G with vertices A1, . . . , An and an edge from Ai to Aj , if P~Ai , Aj !� P~Aj , Ai !,
then G is acyclic iff P is acyclic.

gImportant in the sense that it assures that the ranking of A and B depends only on A and B.
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4. LABELING ALGORITHMS FOR FUZZY WEIGHTED GRAPHS

4.1. Label-Correcting Algorithm

This section describes the generic label-correcting algorithm (adapted from
Martins et al.’s version10 for the crisp multicriteria shortest path problem) for find-
ing all nondominated s,vi paths in a connectedh weighted fuzzy graph EG � ~V, E, Ic!,
for all nodes vi in EG, where s denotes a fixed initial node of EG for all paths. We use
the additive cost criterion; the multiplicative criterion is readily obtained by replac-
ing instances of � by �. We also require that every cycle c of EG has strictly
positive weight.i This ensures that the algorithm will terminate; all nondominated
paths will be finite and have a finite objective value. The pseudo code for the
algorithm is shown in Figure 2.

The algorithm uses the following data structures: Q is a first-in–first-out
(FIFO) queue, and the linear list L~vj ! contains, at any given moment during algo-
rithm execution, the labels of the s,vj paths that have been found so far and that are
not dominated by other examined paths. Corresponding to the kth nondominated
path that is found, we store the kth label in L~vj ! as follows:

L~vj , k! � @ Df ~ ps,vj
k !, ~vi , ki !#vj

k

hMeaning that all nodes in the graph can be reached.
iA fuzzy number A is said to be strictly positive if for all z � #�`,0# , A~z! � 0.

Figure 2. Label-correcting algorithm.
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in which vi is the vertex preceding vj in the path ps,vj
k , and ki indicates that for the

ki th s,vi path ps,vi
ki in L~vi ! applies: Df ~ ps,vj

k !� Df ~ ps,vi
ki !� Ici, j . When the algorithm

terminates, all nondominated paths can be reconstructed by walking reversely
through the pointers in all intermediate L~vi ! until the starting vertex s is reached.

The order in which the algorithm walks through the graph is not fixed, but
because objective values of s,vj paths are calculated as the sum (or product in case
of a multiplicative criterion) of the objective value of an s,vi path and Ic~vi ,vj !, and
because � and � are commutative and associative, this does not impact the
algorithm’s correctness (it may impact the speed of finding the result). Further-
more, it is not necessary to consider all s,vi paths and select the nondominated
ones afterward. The search space can be reduced due to the strong optimality prin-
ciple: Every subpath of an optimal path is also optimal. In case a journey from
Amsterdam to Paris through Brussels seemed better than through Rome, it is use-
less to consider a stop in Rome before getting to Paris if you are looking for
an optimal Amsterdam–Paris–Madrid path. This pruning in the search space is
implemented on lines 12 and 15. The ranking method �M used in these lines must
fulfill certain conditions to be sure that we get a correct result, that is, that the
result really contains all nondominated paths. Those conditions are discussed in
Section 5.1.

Finally, we focus on a few important lines in the algorithm:

• At algorithm initialization, every node v (except s! is assigned a dummy label
@`, ~�,�!#v1 [line 2]. For our purposes, ` here is just taken to denote a dummy value
that is dominated by any fuzzy number. s receives the label @0, ~�,�!# s1 , where the crisp
value 0 represents the objective value of the empty path from s to itself [line 4].

• If a new s,vj path pnew is found, it will not be kept in list L~vj ! if there is already an s,vj
path pold in L~vj ! that dominates pnew (i.e., if pold �DM

pnew ! [line 12].
• If there is no s,vj path in L~vj ! that dominates pnew in step I, pnew is added to the list [line

14] in order to be able to extend this path later on our quest for optimal paths to nodes
that can be reached from vj . In step I, all previously found paths pold, l in L~vj ! that are
dominated by pnew (i.e., pnew �DM

pold, l ! are removed [line 15].
• In line 16, the paths starting from s to all children of vj in EG have to be reconsidered.

Suppose that, in this step, for a child k of vj in EG we have an s, k path via parent x that is
not dominated by a path via vj . Now that we have found a new optimal path towards vj ,
it is possible that this new path dominates the s, k path via x. For this reason, this algo-
rithm is called label correcting: If we are only interested in an optimal path from s to
one particular vertex v, we cannot be sure that a constructed s,v path will not be domi-
nated by another alternative until the entire algorithm has finished.

4.2. Label-Setting Algorithm

The efficiency of the label-correcting algorithm shown in Figure 2 can be
considerably increased if EG does not have negative weights, that is, for all ~vi ,vj !�
E and z � #�`,0@, Ici, j~z!� 0. The idea is as follows: We replace the list Q by a
priority queue PQ such that on line 7, the label returned by takeNext~PQ! refers to
a nondominated s, t path p, that is, one such that for all q � P~s, t !, Df ~ p! �M Df ~q!.

We can partition the labels of a given node vi into two classes: L~vi ! contains
temporary labels, whereas OL~vi ! contains permanent labels that correspond to
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optimal paths. At creation time, all labels are temporary; only when a label is
selected from PQ does it becomes permanent. To check whether a new path is
dominated, both L~vi ! and OL~vi ! have to be examined, but only L~vi ! has to be
made consistent in line 15, warranting another significant gain in time. This is
called the label-setting algorithm, an extension of the well-known Dijkstra
algorithm.

To make sure the optimization is correct, we must be able to guarantee that
PQ indeed ranks its labels in such a way that the head of the queue always repre-
sents a nondominated path. For example, Okada and Soper8 used LR-fuzzy num-
bers as link weights and the ranking �O for dominance checking. To rank labels in
the priority queue, they used the total order �Ls with s~1! � 2, s~2! � 3,
s~3!� 1, and s~4!� 4. By Lemma 1, a label ranked first by PQ corresponds to
an optimal path. They also described a variant of the algorithm by replacing �O

with �h , but they neglected to point out that PQ in that case should not rely on
the lexicographic order, but be directly formulated in terms of �h . Indeed, for
example, consider a PQ containing ~10,12,5,5!LR and ~10,13,9,6!LR ; then
~10,12,5,5!LR �1 ~10,13,9,6!LR , still ~10,13,9,6!LR �Ls ~10,12,5,5!LR , and the
algorithm will fail by turning the dominated label ~10,13,9,6!LR into a perma-
nent one.

4.3. A Numerical Example

In this subsection, as an illustration we apply the label-setting algorithm to an
example fuzzy weighted graph EG � ~V, E, Ic! shown in Figure 3 and similar to the
one in Ref. 8: Starting from a designated initial node s, we search all nondomi-
nated s,vi paths for each node vi � V. For simplicity, we use trapezoidal fuzzy
numbers as weights and we compare them using the ranking method �Y2

. It can be
verified that Y2~ml , mr ,a,b! � 1

2
_ @ml � mr � ~b � a!/2!# . In Table I we show

the contents of the priority queue PQ, and Table II gives on overview of each
node’s linear list of labels.

Initialization: L~s,1! R @~0,0,0,0!, ~�,�!# s1. This label is added to the empty
queue PQ and is immediately removed from it by takeNext~PQ!. Label

Figure 3. Fuzzy weighted graph ~V, E, Ic!.
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@~0,0,0,0!, ~�,�!# s1 becomes permanent and moves to OL~s!. All other nodes vi are
assigned a label L~vi ,1! � @`, ~�,�!#vi

1 and no permanent ones.

Step 1: Nodes v2 and v3 are children of s; suppose that, for example, v2 is consid-
ered first: ps,v2

2 R ps, s
1 �~s,v2 ! with Df ~ ps,v2

2 ! � Df ~ ps, s
1 ! � Ics,v2 � ~0,0,0,0! �

~20,20,10,10! � ~20,20,10,10!. This path dominates label @`, ~�,�!#v2
1 in L~v2 !

that will be removed. This free position in the list is used for the new path and its
corresponding label: ps,v2

1 R ps,v2
2 ; L~v2,1! R @~20,20,10,10!, ~s,1!#v2

1 . Analo-
gously, after considering v3, L~v3 ! will contain L~v3,1!R @~62,65,10,5!, ~s,1!#v3

1 ;
this label corresponds to the path ps,v3 � ps, s

1 �~s,v3 !. Because Y2~20,20,10,10!�
20 � 62.25 � Y2~62,65,10,5!, L~v2,1! is ranked prior to L~v3,1! in the priority
queue PQ.

Step 2: @~20,20,10,10!, ~s,1!#v2
1 is selected and becomes permanent. Nodes v3

and v5 are children of v2 ; suppose that, for example, v3 is considered
first: ps,v3

2 R ps,v2
1 �~v2,v3 ! with Df ~ ps,v3

2 ! � Df ~ ps,v2
1 ! � Icv2,v3 � ~20,20,10,10! �

~38,40,3,5! � ~58,60,13,15!. Because Y2~ Df ~ ps,v3
2 !! � 59.5 � Y2~ Df ~ ps,v3

1 !!, this
new path dominates label L~v3,1!, which is removed from the list and from the pri-
ority queue: L~v3 ! � ~ @~58,60,13,15!, ~v2,1!#v3

1 !. Node v5 is first reached from

Table I. The labels in the priority queue PQ at the beginning of each step; at each stage,
the leftmost label is selected from PQ.

1 @~0,0,0,0!,~�,�!#s1

2 @~20,20,10,10!,~s,1!#v2
1 @~62,65,10,5!,~s,1!#v3

1

3 @~58,60,13,15!,~v2,1!#v3
1 @~75,80,13,15!,~v2,1!#v5

1

4 @~71,77,16,18!,~v3,1!#v4
1 @~75,80,13,15!,~v2,1!#v5

1 @~74,78,15,23!,~v3,1!#v5
2

5 @~75,80,13,15!,~v3,1!#v5
1 @~74,78,15,23!,~v3,1!#v5

2 @~146,162,21,30!,~v4,1!#v6
1

6 @~74,78,15,23!,~v3,1!#v5
2 @~145,160,33,35!,~v5,1!#v6

1

7 @~145,160,33,35!,~v5,1!#v6
1 @~144,158,35,43!,~v5,2!#v6

2

Table II. The labels for each node, ordered by creation time. An underlined label is
dominated and is removed at some point during algorithm execution.

v1 v2 v3

@~0,0,0,0!,~�,�!#s1 @~20,20,10,10!,~s,1!#v2
1 @~62,65,10,5!,~s,1!#v3

1

@~58,60,13,15!,~v2,1!#v3
1

v4 v5 v6

@~71,77,16,18!,~v3,1!#v4
1 @~75,80,13,15!,~v2,1!#v5

1 @~146,162,21,30!,~v4,1!#v6
1

@~74,78,15,23!,~v3,1!#v5
2 @~145,160,33,35!,~v5,1!#v6

1

@~144,158,35,43!,~v5,2!#v6
2
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v2, so L~v5,1! � @`, ~�,�!#v5
1 is replaced by L~v5,1! � @~20,20,10,10! �

~55,60,3,5!, ~v2,1!#v5
1 � @~75,80,13,15!, ~v2,1!#v5

1 . L~v3,1! and L~v5,1! are added to
PQ.

Step 3: @~58,60,13,15!, ~v2,1!#v3
1 is selected and becomes permanent. Nodes v4 and

v5 are children of v3. v4 is reached for the first time, so L~v4,1! R @~58 � 13,
60 � 17, 13 � 3, 15 � 3!, ~v3,1!#v4

1 � @~71,77,16,18!, ~v3,1!#v4
1 . ps,v5

2 R
ps,v3

2 �~v3,v5 ! with Df ~ ps,v5
2 ! � ~58,60,13,15! � ~16,18,2,8! � ~74,78,15,23!.

Because Y2~ Df ~ ps,v5
2 !! � 78 � Y2~ Df ~ ps,v5

1 !!, the path found in step 2 and this one
are nondominated alternatives. Hence L~v5,2! � @~74,78,15,23!, ~v3,1!#v5

2 is
added to L~v5 !. The labels L~v4,1! and L~v5,2! are added to the priority queue.

Step 4: @~71,77,16,18!, ~v3,1!#v4
1 becomes permanent, and its only extension, by

v6, is considered. Df ~ ps,v6
1 ! � ~71 � 75, 77 � 85, 16 � 5, 18 � 12!, so the

initial L~v6,1! is replaced by @~146,162,21,30!, ~v4,1!#v6
1 in the list of temporary

labels and the new label is added to the priority queue.

Step 5: @~75,80,13,15!, ~v2,1!#v5
1 becomes permanent. Only v6 is a child of v5, so

we consider ps,v6
2 � ps,v5

1 �~v5,v6 !. Because this new path with objective value
~75 � 70, 80 � 80, 13 � 20, 15 � 20! � ~145,160,33,35! dominates the s,v6
path found in step 4, the latter is removed from L~v6 ! as well as from PQ. The new
label is added to L~v6 ! and to the priority queue.

Step 6: The second temporary label of v5, @~74,78,15,23!, ~v3,1!#v5
2 is selected

and becomes permanent. v6 is a child of v5, Df ~ ps,v6
2 ! � ~74,78,15,23! �

~70,80,20,20! � ~144,158,35,43!, with Y2~144,158,35,43! � 153 � Y2~145,
160,33,35!. In other words, the two nondominated alternative s,v5 paths cause
two nondominated alternative s,v6 paths. The newly created label for v6
is added to the list and to PQ.

Step 7: In the priority queue, only labels of v6 are left. Because this node has no
children, the algorithm finishes after turning its labels into permanent ones.

Reconstruction of the nondominated paths: Walking reversily through the
pointers in the permanent labels, one finds, for example, one optimal s,v4 path
~s,v2,v3,v4 ! and two optimal s,v6 paths: ~s,v2,v5,v6 ! and ~s,v2,v3,v5,v6 !.

5. SUITABLE RANKING METHODS FOR DOMINANCE CHECKING

5.1. Necessary and Sufficient Conditions for Correctness
of the Labeling Algorithms

Given a fuzzy weighted graph EG, the labeling algorithms from the previous
section search all optimal paths using either the additive or the multiplicative cost
criterion. The ranking method �M will have to satisfy certain properties to come
up with the correct solution. The following theorem spells them out.
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Theorem 1 (Necessary and Sufficient Conditions). The label-correcting
algorithm is correct, that is, obtains a result that contains all nondominated paths,
if and only if the following restrictions on �M are met j ~A is taken to be a
sufficiently wide collection of possible objective values, e.g., all LR-fuzzy numbers
for particular L and R):

~C.1! �M is antireflexive, that is, ~∀A � A!~¬~A �M A!!
~C.2! �M is transitive, that is, ~∀A, B,C � A!~A �M B and B �M C ]

A �M C!
~C.3! ~∀A, B � A!~A �M B depends only on A and B)
~C.4! �M is compatible with �, that is, ~∀A, B,C � A!~A �M B ]

A � C �M B � C!
~C.49! �M is compatible with �, that is, ~∀A, B,C � A!~C is strictly

positive and A �M B ] A � C �M B � C!

The label setting algorithm is correct if and only if C.1–C.4/C.4' are met, and
additionally each label returned by PQ corresponds to a nondominated path.

Proof. Necessity of C.1–C.4/C.4' can be proved by contraposition; here we only
prove C.4. Suppose that in step I, the s, t path pI is constructed, and in a later step J
the s, t path pJ is constructed. In a still later step K, nondominated paths to u, a
child of t are searched. In this situation, the algorithm may yield an incorrect result
if �M is not compatible with �: If Df ~ pI ! �M Df ~ pJ !, then pJ will not be added to
the list L~t !. In step K, pI�~t, u! will be considered and pJ�~t, u! will be omitted,
although it is possible in our assumption that

¬~~ Df ~ pI !� Ic~t, u!! �M ~ Df ~ pJ !� Ic~t, u!!!

and hence,

pI�~t, u! §DM
pJ�~t, u!

so the algorithm fails by ignoring the path pJ�~t, u!.
It is clear that the above conditions taken together are also sufficient; note in

particular that C.4, as well as C.4', entail the strong optimality principle that justi-
fied the pruning steps in the labeling algorithms: Any subpath of a nondominated
path will be itself nondominated. �

5.2. Suitable Ranking Methods

Let us first consider Okada and Soper’s implementation8 of the label-setting
algorithm. It is easy to verify that �O is antireflexive, transitive, and compatible
with both � and �. Clearly, it also satisfies C.3. This also holds for the weakened

jC.4 applies when using the additive cost criterion, C.4' when using the multiplicative cost
criterion.
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version �h . Hence, together with the findings in Subsection 4.2, we conclude
their strategy is correct.

All the ranking methods studied in Refs. 17 and 19 satisfy at least the basic
properties C.1 and C.2. C.3 is met by all class I methods and by certain class III
methods, as mentioned in Subsection 3.2. Properties C.4 and C.4' turn out to be a
great deal more challenging; it is particularly striking that the intuitively appeal-
ing and widespread �Y1

is incompatible with both � and �, and so cannot be
used in any implementation. On the other hand, �Y2

, and more generally �CM l ,
are compatible with �; the same is true for �ADm . C.4 holds for a number of class
III methods as well,19 but, surprisingly, all of them result in the same final ranking
as a corresponding class I methodk and hence they do not add anything new.

Compatibility with � is the privilege of an even more restricted set of rank-
ing methods. Among its members, �PD , �ND , and �PSD are the most interesting
ones.l Of all the class I methods, only Adamo’s �ADm is known to satisfy it.19

Concluding, if we want to select a suitable ranking method to implement the
fuzzy shortest path algorithms, we are not exactly spoiled for choice. Also, the
additive cost criterion will generally involve selecting a different method than
the multiplicative cost criterion, unless one is prepared to use Adamo’s method.
An intuitive argument against the latter method is that in its extreme simplicity it
dismisses a lot of information about the evaluated weights, and hence can be
expected to generate many incomparabilities. Finally, when using one of �PD ,
�ND , or �PSD one should take care that the fuzzy weights satisfy the conditions of
Section 3.2 that guarantee C.3.

6. A FAST IMPLEMENTATION

A frequently heard criticism concerning the introduction of imprecision in
shortest path problems is that it renders an already complex computational proce-
durem even more intractable by its reliance on costly operations on fuzzy num-
bers. Let us examine this claim: Although it is true that fuzzy addition � is, in
general, a very complex operation that requires the calculation of a supremum
over an infinite set of values, in practice, certain efficiency standards can be met,
because addition for LR-fuzzy numbers is closed and requires only four additions
of reals (see Section 2.1). Fuzzy multiplication �, admittedly, is a more problem-
atic matter, but when the spreads are not too large, Dubois and Prade5 suggested
ways to arrive at easy-to-compute, satisfactory approximations of the exact result.

kSpecifically, the ranking methods �PY
~Yuan), �K1

, and �K2
(Kolodziejczyk) and �SS

(Saade and Schwarzlander) result in the same ranking as �Y2
, whereas the method �Nl (Naka-

mura) results in the same ranking as �CM l .19

lAgain, there are a number of correspondences between methods encountered in the liter-
ature that reduce the actual number of different suitable ranking methods: specifically, Wang19

proves that �NSD (Dubois and Prade) and �bT
and �dT

(Delgado, Verdegay, and Vila) all result
in the same final ranking as PD.

mIt is shown in Ref. 20 that even the crisp bicriterion (i.e., involving just two criteria)
shortest path problem cannot be solved in polynomial time.
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What appears to harm fuzzy shortest path implementations’ efficiency most,
however, seems to be the comparisons that need to be made at each step. Assum-
ing we want to address the problem of dominance checking with a certain degree
of sophistication by using a fuzzy ranking method that is sufficiently discriminat-
ing between alternatives, this soon becomes a serious bottleneck as in each step,
for instance, a defuzzification or an evaluation by a consistent fuzzy relation has
to be performed.

The aim of this section is to show that for some specific choices of a ranking
method, this problem can be overcome. Indeed, consider a class I ranking method
�DF , that is, one that proceeds by assessing a defuzzification value DF~A! that
reduces the information contained in a fuzzy number A to a crisp (real) number
that is used for comparison. It is clear that we can apply defuzzification at differ-
ent stages during the search process for optimal paths in EG � ~V, E, Ic!:

• Plan I: defuzzification of weights (before line 1 in Figure 2): The fuzzy weighted graph
EG � ~V, E, Ic! becomes a crisp graph G � ~V, E, c! (with c � DF~ Ic!! in which all

optimal paths can be obtained by using real operations (�, .) to calculate the objective
values and �R for dominance checking.

• Plan II: maintaining fuzzy weights and using defuzzification for dominance checking
(in line 12 and 15): The fuzzy objective value is calculated with the extended operators
� and �. The dominance relation is determined by �DF .

Plan I is clearly the faster option: All imprecision in the fuzzy graph disappears
before the (now crisp) search algorithm starts. As an extra advantage, plan I allows
specialized implementations of the search algorithm (see, e.g., Ref. 21) for crisp
graphs to be used for fuzzy weighted graphs without any modification.

The following theorem shows when the result of plan II can be obtained by
the faster plan I.

Theorem 2. Searching for optimal paths using the additive or multiplicative cost
criterion, plan I and plan II are equivalent, correct implementations if the defuzz-
ification operator DF satisfies

(C.a) DF~A � B! � DF~A! � DF~B!,∀~A, B! � A2 (additive cost criterion)
(C.m) DF~A � B! � DF~A!.DF~B!,∀~A, B! � A2 (multiplicative cost criterion)

where A denotes the class of fuzzy numbers that can occur as edge weights; in
case of the multiplicative cost criterion, A contains no negative fuzzy numbers.

Proof. Bearing in mind Theorem 1, it can easily be proved that �DF meets C.1–
C.4 if DF meets C.a and we use the additive cost criterion. We prove, for example,
C.4. Because DF~A! � R applies for the set of fuzzy objective values A we can
prove for arbitrary A, B, and C from A:

A �DF B ? DF~A! � DF~B!? DF~A!� DF~C! � DF~B!� DF~C!

? DF~A � C! � DF~B � C!? A � C �DF B � C

Analogously, from C.m follow C.1–C.4' using the multiplicative cost criterion. �

1066 CORNELIS, DE KESEL, AND KERRE



Based on the linearity of the integral, it is easily verified that Y2 (and, more
generally, CM l ! verifies C.a, so plan I can be used. Remark how this optimization
affects the complexity of the fuzzy shortest path problem when working with
LR-fuzzy numbers. Because computing the defuzzification value can happen in
constant time (see, e.g., the numerical example in Section 4.3), the complexity of
plan I is equal to that of the classical (crisp) single-criterion labeling algorithms.
We leave it to the reader to verify the gain in efficiency that this optimization
holds in stock for the example in Section 4.3.

On another count, accumulation of uncertainty, that is, a gradual widening of
the left and right spreads of the objective values as longer paths are considered, is
of no consequence here. This point deserves our closer attention: in Ref. 2, Arnold
et al. argued that, when one would attempt to generalize Dijkstra’s or any other
shortest path algorithm the way we have done, by adding up (or multiplying) fuzzy
weights, “one will get a very uncertain conclusion, based on a long chain of uncer-
tainties.” Although this is, of course, true, it in no way impacts the actual objective
of the algorithms, which is to find one or more optimal paths between two given
nodes; moreover, the user will probably never be interested in the uncertainty in
the outcome, because its defuzzication value gives him a solid approximation of
the expected path weight.

What is even more striking, the strategy that Arnold et al. pursued as an “alter-
native” to the fuzzy shortest path algorithms can actually be seen as a special
instance of the latter. Indeed, for every link in their graph (representing a large
telecommunications network), they used a “fuzzy link evaluator” to aggregate sev-
eral imprecise characteristics of that link into a single fuzzy number, which they
then defuzzified and used in a crisp shortest path problem. Clearly this idea is
equivalentn to our plan I!

7. CONCLUSION

In this article, we have built up a formal framework for the labeling algo-
rithms to find optimal paths in a fuzzy weighted graph; in doing so, we have also
spelled out the necessary and sufficient conditions for correctness, and examined
which of the commonly used fuzzy ranking methods satisfy them. As a somewhat
surprising result, our study has revealed that the method based on the very popular
center of gravity defuzzification method has some defects that make it unsuitable
for the purposes of the fuzzy shortest path algorithm. Moreover, it has been shown
that if a defuzzification method is used as a basis for ranking fuzzy numbers, a
significant optimization by defuzzifying all fuzzy weights before algorithm execu-
tion is possible under certain conditions on the involved defuzzification operator.
What is more, this optimization not only allows us to reduce the complexity of the
fuzzy shortest path problem to that of the crisp single-criterion labeling algo-
rithms without sacrificing too much in the way of expressivity, but may also serve
to give us more insight into, and hence attribute more credit to, heuristic approaches
like the one in Ref. 2 by embedding them in a sound theoretical framework.

nIt is not mentioned in Ref. 2 which defuzzification operation was used, so we cannot say
whether their approach is correct in the sense of our theoretical exposition.
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