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1 Introduction

In today’s information—driven economy, companies may benefit a lot from suit-
able knowledge management. Although knowledge management is not just a
technology—based concept but rather a business practice in general, the pos-
sible and even indispensable support of IT—tools in this context is obvious.
Because of the large data repositories many firms maintain nowadays, an im-
portant role is played by data mining techniques that dig up useful knowledge
from these large data volumes. Among them, association rules [1] provide a
convenient and effective way to identify and represent certain dependencies
between attributes in a database. Originally, association rules emerged in the
domain of shops and customers; the basic idea is to identify frequent itemsets
in market baskets, i.e. groups of products frequently bought together. Store-
keepers may use this information to decide on how to place merchandise on
shelves to maximize a cross—selling effect, how to advertise, what to put on
sale (for instance lowering the price of product A to attract customers, mean-
while increasing the price of product B that is frequently bought together
with A), . . . Evidently, the application of association rules can shed light on
a wide range of decision making and marketing problems going beyond the
scope of straightforward storekeeping.

Association rule mining is traditionally performed on a data table with
binary attributes. Conceptually, a record x in the data table represents a
customer transaction, whereas the attributes represent items that may be
either purchased in that transaction, or not. Therefore, for each attribute
A, A(x) is either 1 or 0 indicating whether or not item A was bought in
transaction x. An association rule is an expression of the form A ⇒ B in
which A and B are attributes, such as cheese ⇒ bread. The meaning is that
when A is bought in a transaction, B is likely to be bought as well.



In most real life applications, databases contain many other attribute val-
ues besides 0 and 1. Very common for instance are quantitative attributes such
as age or income, taking values from a partially ordered, numerical scale, often
a subset of the real numbers. One way of dealing with a quantitative attribute
like cost is to replace it by a few other attributes that form a crisp partition
of the range of the original one, such as low = [0, 100[, medium = [100, 300[
and high = [300,+∞[. Now we can consider these new attributes as binary
ones that have value 1 if the cost attribute equals a value within their range,
and 0 otherwise. In this way, the problem is reduced to the mining procedure
described above [9]. From an intuitive viewpoint, it makes more sense however
to draw values from the interval [0, 1] (instead of just {0, 1}), to allow records
to exhibit a given attribute to a certain extent only. In this way binary at-
tributes are replaced by fuzzy ones. The corresponding mining process yields
fuzzy association rules (see e.g. [2, 4, 5, 6, 7]).

Association rules can be rated by a number of quality measures, among
which support and con¯dence stand out as the two essential ones. Support
measures the statistical significance of a candidate rule A⇒ B, whereas con-
fidence assesses its strength. The basic problem of mining association rules is
then to generate all association rules A⇒ B that have support and confidence
greater than user—specified thresholds. These measures can be generalized for
fuzzy association rules in several ways.

The goal of this paper is not to introduce yet another series of quality mea-
sures, but to shine a bright light on what has been proposed so far. Section
2 deals with the first pillar of our argument: the identification of transactions
in a database as positive or negative examples of an association between at-
tributes. Along the way we recall the basic concepts of support and confidence,
initially in the framework of crisp association rules. Soon however we move on
to the mining of fuzzy association rules as it is specifically in this setting that
new and seemingly aberrant quality measures have been proposed recently,
such as non—symmetrical measures of support. The second important pillar in
this paper is that support and confidence measures should actually be thought
of as compatibility and inclusion measures respectively (Section 3). Leaning
on both pillars, in Section 4 we take the mystery out of some recently pro-
posed quality measures for fuzzy association rules by providing clear insight
into their true semantics.

2 Positive and Negative Examples

2.1 Crisp Association Rules

Let X be a non—empty data table containing records described by their values
for binary attributes A belonging to a set A. For an attribute A and a record
x ∈ X, A(x) = 1 means item A was purchased in transaction x, while A(x) = 0
means A was not bought. In this way, A can also be thought of as the set
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of transactions containing the item, i.e. x ∈ A iff A(x) = 1, and x /∈ A iff
A(x) = 0. Likewise coA is the set of transactions not containing the item,
i.e. x ∈ coA iff A(x) = 0, and x /∈ coA iff A(x) = 1. Let A,B ∈ A. The
support of an association rule A⇒ B is usually defined as

supp(A⇒ B) = |A ∩B|/|X | (1)

i.e. the number of elements belonging to both A and B, scaled to a value
between 0 and 1. The idea behind the definition of support is to measure
the statistical significance by counting positive examples, i.e. transactions that
explicitly support the hypothesis expressed by the association rule. It is worth
noting that the positive examples of A⇒ B are also those of the rule B ⇒ A,
i.e. support is a symmetric measure. Hence, as can be expected, it only reveals
part of the global picture. This is why we also need the confidence measure,
to assess the strength of a rule. Traditionally, if a rule A ⇒ B generates a
support exceeding a user—specified threshold, it is meaningful to compute its
confidence, i.e. the proportion of correct applications of the rule.

conf(A⇒ B) = |A ∩ B|/|A| (2)

Note that |A| will not be 0 if we assume that the confidence is computed only
when the support exceeds a certain threshold (which should be greater than
0 to be meaningful).

Having identified the “supporters” of A⇒ B as positive examples, we can
ask ourselves what a negative example of the same rule might look like. It is
clear that a transaction violates the rule A⇒ B as soon as it contains A but
not B. As opposed to positive examples, a negative example of A ⇒ B is
no negative example of B ⇒ A, and vice versa. Also, the complement of the
set of positive examples does not necessarily equal that of negative examples,
just like a “non—negative example” differs from a “positive example”. This is
summarized in Table 1 (see also [4]). It is interesting that Dubois et al. [5]

Table 1. The nature of transaction x w.r.t. rules A⇒ B and B ⇒ A

x A⇒ B B ⇒ A

positive example x ∈ A ∧ x ∈ B x ∈ A ∧ x ∈ B
non-positive example x /∈ A ∨ x /∈ B x /∈ A ∨ x /∈ B
negative example x ∈ A ∧ x /∈ B x /∈ A ∧ x ∈ B

non-negative example x /∈ A ∨ x ∈ B x ∈ A ∨ x /∈ B

also distinguish between positive and negative examples that are grouped into
sets they call S+ and S− respectively. Furthermore, they introduce the class of
irrelevant examples S± as S± = {x ∈ X | x �∈ A}. One can easily verify that
our classes of non—positive and non—negative examples are obtained as unions
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of S± with the set of positive and negative examples, respectively. Also, while
S−, S+ and S± form a partition of X, this is clearly not the case for the four
classes we defined. The most important reason we choose to consider them is
that they all give rise to different measures:

Definition 1. The quality measures M1 ,M2 ,M3 , and M4 of the rule A⇒ B
are respectively defined as

M1(A⇒ B) = |A ∩ B|/|X| M3(A⇒ B) = |A ∩ coB|/|X|

M2(A⇒ B) = |coA ∪ coB|/|X| M4(A⇒ B) = |coA ∪ B|/|X|

It can be easily verified that

M2(A⇒ B) = 1−M1(A⇒ B) and M3(A⇒ B) = 1−M4(A⇒ B) (3)

Hence, only two measures are independent. We can for instance choose to
work with M1 and M4 . The measure M1 corresponds to the symmetrical sup-
port measure (supp) of Formula (1), while M4 is a non—symmetrical measure
taking into account all examples that do not violate the rule A⇒ B.

2.2 Fuzzy Association Rules

Recall that a fuzzy set A inX is anX → [0, 1] mapping. Fuzzy—set—theoretical
counterparts of complementation, intersection, and union are defined, as usual,
by means of a negator, a t-norm, and a t-conorm. Recall that an increasing,
associative and commutative [0, 1]2 → [0, 1] mapping is called a t-norm T
if it satisfies T (x, 1) = x for all x in [0, 1], and a t-conorm S if it satisfies
S(x, 0) = x for all x in [0, 1]. A negator N is a decreasing [0, 1] → [0, 1]
mapping satisfying N (0) = 1 and N (1) = 0. For A and B fuzzy sets in X we
define coNA(x) = N (A(x)), A ∩T B(x) = T (A(x), B(x)), and A ∪S B(x) =
S(A(x), B(x)) for all x in X .

Let A(x) be the degree to which an attribute A is bought in a transaction
x (or in a broader context: the degree to which x satisfies the attribute). This
way A can be thought of as a fuzzy set in the universe of transactions, and the
measures discussed above have to be generalized accordingly. The cardinality
of a fuzzy set in a finite universe X is defined as usual as the sum of the
individual membership degrees. Replacing the set—theoretical operations in
Definition 1 by their fuzzy—set—theoretical counterparts (defined by means of
a negator N , a t-norm T , and a t-conorm S), we obtain

Definition 2. The quality measures M1 ,M2 ,M3 , and M4 of the rule A⇒ B
are respectively defined as

M1(A⇒ B) = 1
|X|

x∈X
(A ∩T B)(x) M3(A⇒ B) = 1

|X|
x∈X

(A ∩T coNB)(x)

M2(A⇒ B) = 1
|X|

x∈X
(coNA ∪S coNB)(x) M4(A⇒ B) = 1

|X|
x∈X

(coNA ∪S B)(x)
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The natural extension of Formula (3) holds when N is the standard negator
Ns (defined by Ns(x) = 1−x for all x in [0, 1]) and (T ,S,Ns) is a de Morgan
triplet, i.e. T (x, y) = Ns(S(Ns(x),Ns(y))) for all x and y in [0, 1]. Generalizing
the confidence measure listed above to the fuzzy case, the following formula
is obtained:

conf(A⇒ B) =
x∈X

(A ∩T B)(x)

x∈X
A(x)

(4)

3 Inclusion and Compatibility of Fuzzy Sets

Typically, to define fuzzy subsethood one takes a definition of classical set
inclusion and tries to extend (“fuzzify”) it to apply to fuzzy sets. Below we
quote three distinct, but essentially equivalent1 , definitions of the inclusion of
A into B, where A and B are crisp subsets of X:

A ⊆ B ⇐⇒ (∀x ∈ X)(x ∈ A⇒ x ∈ B), (5)

⇐⇒ A = ∅ or
| A ∩ B |

| A |
= 1, (6)

⇐⇒
| coA ∪B |

| X |
= 1 (7)

While (5) is stated in strictly logical terms, the other two are based on counting
the elements of a set, i.e. on cardinality, and have a probabilistic (i.e. frequen-
tist) flavour. It is therefore not surprising that their respective generalizations
to fuzzy set theory cease to be equivalent and give rise to cardinality—based
and logical inclusion measures, respectively [3]. For instance, formula (5) can
be generalized to fuzzy sets by replacing the two—valued implication by a
[0, 1]—valued implicator. Recall that an implicator I is a [0, 1]2 → [0, 1] map-
ping such that I(x, .) is increasing and I(., x) is decreasing, and I(1, x) = x
for all x in [0, 1], and I(0, 0) = 1. An inclusion measure satisfying desirable
properties is then given by

Inc1(A,B) = inf
x∈X

I(A(x), B(x))

However this approach has certain disadvantages in applications. Indeed, if
two fuzzy sets A and B are equal everywhere, except in the point x for which
A(x) = 1 and B(x) = 0, then Inc1(A,B) = 0. One can think of very concrete
instances in which this indeed makes no sense. Imagine for instance that we are
to evaluate to what extent the young people in a company are also rich. Testing
subsethood of the fuzzy set of young workers into that of rich workers should
then be based on the relative fraction (i.e. the frequency) of good earners

1 Arguably, (5) is more general since it can also deal with infinite sets.
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among the youngsters, and not on whether there exists or does not exist
one poor, young employee. This observation has led researchers to consider
extensions to definition (6) of crisp subsethood. If A and B are fuzzy sets,
then one can define the subsethood of A into B as

Inc2(A,B) =
|A ∩T B|

|A|

if A �= ∅, and 1 otherwise.
In formula (7) the presence of implication is also very clear. For proposi-

tions p and q in binary logic, p ⇒ q has the same truth value as ¬p ∨ q. The
counterpart in fuzzy logic is the so-called S—implicator induced by S and N ,
defined by IS,N (x, y) = S(N (x), y) for all x and y in [0, 1]. Generalizing for-
mula (7) hence gives rise to a softened version of Inc1 in which the supremum
is replaced by taking the average over all elements of X :

Inc3(A,B) =
1

|X |
x∈X

IS,N (A(x), B(x))

Another well-studied class of implicators are the residual implicators IT , in-
duced by a t-norm T in the following way: IT (x, y) = sup{λ|λ ∈ [0, 1] and
T (x,λ) y y} for all x and y in [0, 1].

Another important kind of comparison measures for fuzzy sets, the so—
called compatibility measures, assess their degree of overlap (see e.g. [10]).
The so—called simple matching coefficient

Com1(A,B) =
|A ∩T B|

|X |
=

1

|X |
x∈X

T (A(x), B(x))

is the average degree to which the fuzzy sets A and B together span the
universe X. It is a softened version of

Com2(A,B) = sup
x∈X

T (A(x), B(x))

which is the height of the T —intersection of fuzzy sets A and B. Compatibility
measures are symmetrical but in general not reflexive.

4 A Clear View on the Semantics of the Measures

Throughout the literature on fuzzy association rules, the quality measures
listed in Table 2 are prominent. The first and the third measure are generally
accepted as measures of support and confidence respectively. They assess the
significance and the strength of a fuzzy association rule. They coincide with
a compatibility measure (Com1) and an inclusion measure (Inc2) from fuzzy
set theory.
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Table 2. Quality measures for fuzzy association rules

(1) M1(A⇒ B) or supp(A⇒ B) 1
|X|

x∈X
T (A(x), B(x)) Com1

(2) M4(A⇒ B) 1
|X|

x∈X
IS;N (A(x), B(x)) Inc3

(3) conf(A⇒ B) 1
|A|

x∈X
T (A(x), B(x)) Inc2

The second measure M4(A ⇒ B) corresponds to the number of non—
negative examples of the rule, and coincides with the inclusion measure Inc3
for I an S—implicator. In [4] we tackled the question whether we can substitute
the S—implicator in M4 by a residual implicator, and concluded that such a
replacement is not desirable. This can be roughly explained as follows: an
example can be called non—negative if it does not contradict the rule; so either
if it is in favour of the rule, or if it does not say anything about the rule. The
latter situation arises when A(x) is small. In this case S—implicators tend to
always identify x correctly as a non—negative example, while some residual
implicators overlook it for low B(x) values. In [6], Hüllermeier suggests the
following implication—based measure of support for a fuzzy association rule
A⇒ B:

supp1(A⇒ B) =
x∈X

I(A(x), B(x))

where I is an implicator. Note that by dividing it by |X | we obtain a formula
similar to Inc3. The rationale behind it is that a transaction x with A(x) = 0.6
and B(x) = 0.4 only contributes to degree 0.4 to the commonly used support
(which is our Formula (2) defined by means of T = min). This is considered
to be low since, in the words of [7] \x does hardly violate (and hence supports)
the rule". We fully agree on the first claim (x is a non—negative example to
a high degree) but not on the second one (being a non—negative example
does not imply being a positive example). Indeed the fundamental difference
between positive and non—negative examples does not seem to be respected
in [7], which becomes evident when examining those transactions that do not
really tell us something about the rule (i.e. that have a low membership degree
in A). To deal with this problem of \trivial support", Hüllermeier suggests to
extend the measure of support to

supp2(A⇒ B) =
x∈X

T (A(x), I(A(x), B(x)))

Furthermore he is in favour of using residual implicators over S—implicators,
which seems to be in conflict with our findings. In [4] we go into this in de-
tail. However if I is the residual implicator induced by a continuous t-norm T
then supp2(A⇒ B) =

x∈X
min(A(x), B(x)) (see e.g. [8]) as is also noted in [7].

Therefore in this case the new measure of support introduced in [6] reduces
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to the commonly used one, and hence does not offer anything new. For this
reason we disagree with the claim of [5] that whereas the traditional support
measure (i.e. supp or M1) is in line with the conjunction—based approach to
modelling fuzzy rules, the above—defined measure supp2 follows the tradition
of implication—based fuzzy rules. Within the literature on fuzzy association
rules there exists another view on the use of Inc3 as well. Chen et al. [2] call
this measure “degree of implication” and use it to replace the traditional con-
fidence measure. This should not come as a great surprise, since their reliance
on Inc3 yields just another way of expressing the subsethood of A into B. For
this reason we also prefer to view the non—symmetrical measure M4 as a confi-
dence measure. Finally, since association rule mining is concerned with finding
frequent patterns in databases, it seems more natural to use cardinality—based
rather than logical compatibility and inclusion measures, which explains why
Inc1 and Com2 are not met in literature on fuzzy association rules.
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