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Abstract. Starting from the generic pattern of the Generalized Modus
Ponens, we develop an efficient yet expressive quantitative model of ap-
proximate reasoning that tries to combine “the best of different worlds”;
following a recent trend, we make a distinction between positive or ob-
served (“guaranteed”) fuzzy rules on one hand, and negative or restrict-
ing ones on the other hand, which allows to mend some persistent mis-
understandings about classical inference methods. To reduce algorithm
complexity, we propose inclusion–based reasoning, which at the same
time offers an efficient way to approximate “exact” reasoning methods,
as well as an attractive implementation to the concept of reasoning by
analogy.
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1 Introduction and Motivation

Reasoning with imprecise information expressed as fuzzy sets (possibility distri-
butions) has received much attention over the past 30 years. More specifically,
researchers have undertaken various attempts to model the following reasoning
scheme (an extension of the modus ponens logical deduction rule), known as
Generalized Modus Ponens (GMP):

IF X is A THEN Y is B
X is A′

Y is B′

where X and Y are assumed to be variables taking values in the respective uni-
verses U and V ; furthermore A, A′ ∈ F(U) and B,B′ ∈ F(V )1.

1 By F(U) we denote all fuzzy sets in a universe U , i.e. mappings from U to [0, 1].
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Traditionally, the if–then rule is represented by a fuzzy relation R (a fuzzy
set in U × V ), and to obtain an inference B′ about Y , the direct image R′ ↑T A
of A′ under R by means of a t–norm2 T is computed3, i.e. for v in V ,

B′(v) = R ↑T A′(v) = sup
u∈U

T (A′(u), R(u, v)) (1)

R is typically modelled by either a t–norm T or an implicator4 I, such that
for all u in U and v in V

R(u, v) = T (A(u), B(v)) (2)
or, R(u, v) = I(A(u), B(v)) (3)

This choice gives rise to the conjunction–based, resp. implication–based model
of approximate reasoning (see e.g. [1]). Also (1) can be easily generalized to a
batch of parallel fuzzy rules (as in a fuzzy expert system); in this paper we do
not consider this extended setting.

Two important points should be made w.r.t. this “de facto” procedure:

1. Regarding semantics, Dubois et al. [4] recently pointed out that when R is
modelled by a t–norm as in (2), the application of (1) invokes undesirable
behaviour of the reasoning mechanism.

2. Regarding complexity, the calculation of the supremum in (1) is a time–
consuming process. When |U | = m and |V | = n, the complexity of a single
inference amounts to O(mn).

We are convinced that these arguments can be identified as the main causes
why the application of approximate reasoning has been restricted so far to sim-
ple control tasks, and why only crisp numbers are used as input values to the
GMP (as in Mamdani controllers). In this paper, starting from the distinction
between positive and negative information in the light of possibility theory (Sec-
tion 2), in Section 3 we present a unified reasoning mechanism that takes into
account a rule’s intrinsic nature. Section 4 tackles the efficiency issue: we show
that inclusion–based approximate reasoning, as a natural tool for reasoning by
analogy, may reduce complexity to O(m + n) without harming the underlying
rule semantics.

2 Positive and Negative Information in Possibility Theory

Possibility theory is a formalism that tries to capture in mathematical terms im-
precise (typically, linguistic) information about the more or less plausible values

2 A t–norm T is an increasing, commutative, associative [0, 1]2 → [0, 1] mapping that
satisfies T (x, 1) = x for all x in [0, 1].

3 This procedure is also known as Compositional Rule of Inference (CRI).
4 An implicator I is a [0, 1]2 → [0, 1] mapping with decreasing first and increasing

second partial mappings that satisfies I(0, 0) = 1 and I(1, x) = x for all x in [0, 1].
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