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Abstract

In this contribution a first impor-
tant step is made towards the auto-
matic generation of reports that de-
scribe (in natural language) absen-
teeism because of sickness in com-
panies. Three parameters are exam-
ined: the sickness percentage, the
absenteeism percentage (because of
sickness), and the reintegration per-
centage. By means of fuzzy set tech-
niques and an index of reintegration
they are transformed into a linguis-
tic description. The resulting tech-
nique has been successfully applied
in the analysis of numerical absen-
teeism data of the year 2000 in about
20 divisions of a big company in the
Netherlands.
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guistic modifier, linguistic interpre-
tation, fuzzy set, fuzzy clustering,
health care, company strategy

1 Introduction

In the Netherlands an employer pays the
salary of an ill employee during the first year
of absence. Both employer and employee are
responsible for a quick recovery and resump-
tion of work (reintegration). All employers
are obliged to join in with a company health
service, who provides them with an absen-
teeism report about the passed year every
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January. Such kind of reports contain a lot of
numerical data: sickness percentage, absen-
teeism percentage (because of sickness), rein-
tegration percentage, the frequency of report-
ing sick, etc. If the employer wants an analy-
sis of those figures, e.g. by contract with the
health service, this analysis is done by occu-
pational physicians, by hand. For them this
is an extra workload in one of the most busy
months of the year with respect to the high
absenteeism because of sickness — January is
part of the winter season in the Netherlands
— and the resulting crowded office hours in
that month. Still the analyses have to be
done quickly because the company strategies
for the coming year depend on them.

It is clear that an automatic generation of ab-
senteeism analyses would save a lot of time
and effort. In this contribution we present an
approach towards this. An absenteeism anal-
ysis consists mainly of natural language ex-
pressions. To model these we use fuzzy sets.
More specifically, we will show how member-
ship functions for linguistic terms suitable for
the description of the percentages above can
be constructed, and how they can be used for
the interpretation of the numerical data into
natural language sentences. In the case of
sickness percentage (SP) and of absenteeism
percentage (AP) this is quite straightforward.
For the reintegration however we have to rely
on another measure — called the reintegra-
tion index (RI) — which is based on the two
former percentages, and a fortiori also on the
reintegration percentage (RP).



2 The Need for a Reintegration
Index

The percentage of employees of a company
that are sick is referred to as the sickness per-
centage SP. Not all of those employees will be
absent from work. Usually a percentage of the
employees is sick and absent (the absenteeism
percentage AP), while another percentage is
sick but still goes to work (the reintegration
percentage RP). Le.

SP = AP + RP

It is the task of the manager to keep the AP
as low as possible. This can not only be done
by keeping the S P low, but also by controlling
the RP. E.g. a postman who broke a leg will
not be able to deliver letters during several
weeks but he can be reintegrated in a job at
the post office. A general rule for the manager
is thus to keep the RP “high”.

However the absolute value of the reintegra-
tion percentage alone does not give enough
information to be able to interprete the de-
gree of reintegration correctly. When the sick-
ness percentage is 0.001, then the reintegra-
tion percentage of course is smaller than or
equal to 0.001. But despite of the fact that the
RP is very close to its smallest possible value
(namely 0) this is obviously not a problematic
situation with regard to reintegration. When
the sickness percentage is 18, then a reinte-
gration percentage of 1 can be interpreted as
“low”. When on the other hand the sickness
percentage is 1.5, then a reintegration per-
centage of 1 is“high”. Clearly the interpre-
tation of degree of reintegration depends not
only on the RP. Therefore another param-
eter for the degree of reintegration has to be
introduced. A first step to achieve a better in-
terpretation is to take the sickness percentage
as a comparison measure. This can be done
by using the reintegration ratio RR defined
by

RR = RP/SP

For a more refined measure the AP can be
involved as well, resulting in the reintegration

index RI [8]:

RI = RP/(SP x AP)

Discussion about this issue is not ended yet.
However in the research reported in this paper
the reintegration index was used to give an
interpretation of the degree of integration.

3 Construction of the Membership
Functions

In fuzzy-set-theoretical systems linguistic
terms are modelled by means of fuzzy sets. A
fuzzy set on a universe X is characterized by
its membership function, i.e. a mapping from
X to [0,1]. The class of all fuzzy sets on X is
often denoted F(X).

Typically the construction of suitable mem-
bership functions is one of the most difficult
tasks when building an application. The use
of linguistic modifiers — such as more or less
and very — facilitates this job since it allows
for the automatic deduction of new member-
ship functions from the existing ones using
fuzzy modifiers (as we will discuss further on).
Nevertheless first we have to come up with
membership functions for at least some basic
terms. In our case the linguistic trichotomy
[14] will be formed by low, average and high.

Basic terms. At our disposal is an amount
of historical data regarding SP, AP, and the
derived RP and RI, as well as the opin-
ion of an expert. This calls for the com-
bination of a data-driven and a knowledge-
based approach. Concerning the knowledge-
driven part, as only one expert is involved,
we can not consider techniques accumulating
the opinion of a group of persons as was done
e.g. in [15]. Therefore the role of the expert
will be the evaluation and possibly the correc-
tion of the membership functions generated
in a data-driven manner. For this purpose
we have chosen to use a fuzzy clustering algo-
rithm (see [1]).

To find suitable membership functions for the
linguistic terms low, average and high for the
variable SP, all SP values of divisions of the
Dutch postal service of 1994 until 1996 were



Figure 1: SP values of 1994 until 1996 divided
into 3 fuzzy clusters (dashed lines) and their
approximations (solid lines) .

divided into three fuzzy clusters which were
then approximated by S- and II-membership
functions (see Figure 1 for the resulting mem-
bership functions). We recall that the S- and
II-membership functions are characterized by
respectively three and four real parameters
and that they are defined by, for all x in R:
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It is assumed that a < g < v < 4. S-
membership functions are commonly used to
represent increasing notions such as high,
while the complement of an S-function is use-
ful to model a decreasing notion such as low.

The technique described above can also be ap-
plied to obtain membership functions for the
same basic terms for the variables AP, RP
and RI for the overall figures, as well as for
AP for the level of the subsets of the overall
diagnoses: diseases of the locomotor system,
psychological diseases, diseases of the heart

low average high

Figure 2: Membership functions for the basic
terms describing the SP .

and bloodvessels, diseases of the airways, ac-
cidents and a remainder group. Furthermore
the frequency of reporting sick F'S can be an-
alyzed in the same way.

Modified terms. Typically in an applica-
tion 7 (+ 2) linguistic terms are used, because
this magic number corresponds to the num-
ber of distinctions a human being can perceive
(see [13]). Therefore we can still add between
2 and 6 linguistic terms. To this end we will
choose terms that are generated by applying
linguistic modifiers to the basic terms we are
already considering.

Adding new terms allows for more expressiv-
ity and diversity but may for this reason also
cause a slight change in the meaning of the
basic terms. Indeed if we also consider terms
such as very high and more or less high, the size
of the “area” of percentages originally “cov-
ered” by high will decrease. To deal with this
phenomenon, in dialogue with the expert, we
have decided to shift the left and the right
membership function of Figure 1 a bit away
from the center to allow for a more detailed
range in between. This resulted in the mem-
bership functions depicted in Figure 2.

Fuzzy modifiers (also called fuzzy hedges) are
mappings that transform a membership func-
tion into another. They are best-known as
tools for the representation of linguistic modi-



fiers such as very, more or less, at least, roughly,
etc. During the last 3 decades to this purpose
many fuzzy modifiers were suggested in the
literature [12]. Although already useful, they
have important shortcomings, which are due
to the fact that they are designed simply to
perform a technical transformation. Recently
two new approaches were developed in which
the representation of linguistic modifiers is en-
dowed with an inherent semantics: the hori-
zon approach [14] and the framework of fuzzy
modifiers based on fuzzy relations [2, 5].

The strength of the latter approach is that
in determining the degree to which y is more
or less t and the degree to which y is very t,
the context is taken into account, namely the
fuzzy set of all objects resembling y. Resem-
blance is modelled by means of a fuzzy rela-
tion R on X, which is a fuzzy set on X x X.
For y in X the R-foreset of y is the fuzzy set
Ry on X defined by (Ry)(z) = R(z,y), for all
z in X. If R is a resemblance relation on X,
i.e. R is a fuzzy relation on X such that for all
xz and y in X, R(z,y) is the degree to which
x and y resemble each other, then Ry is the
fuzzy set of objects resembling y.

The general idea is that an object y can be
called more or less t if it resembles an object
that can be called t. Likewise an object y can
be called very t if every object it resembles
can be called t. Assuming that the linguis-
tic term t is modelled by means of the fuzzy
set A, in the first case we need to represent
the intersection of Ry and A for which we will
use a triangular norm (a generalization of the
boolean “and” operator to [0,1]). In the sec-
ond case we have to study the inclusion of Ry
in A; to this end we will need another tool
from fuzzy logic, namely an implicator.

A triangular norm (shortly t-norm) 7 is
an increasing, associative and commutative
[0,1]2 — [0, 1]-mapping satisfying the bound-
ary condition 7 (1,z) = z, for all = in [0,1].
An implicator T is a [0,1]?> — [0, 1]-mapping
with decreasing first partial mappings Z(.,x)
and increasing second partial mappings Z(z, .)
that satisfies Z(1,z) = x, for all z in [0, 1].

For A and B two fuzzy sets on X the degree

of inclusion and the degree of overlap are
defined by:

INCL(4, B) = inf T(A(x), B(x))

OVERL(A, B) = 2161)12 T(A(z), B(z))

Using these notions the following representa-
tion can be constructed:

(more or less A)(y) = OVERL(Ry, A))

(very A)(y) = INCL(Ry, A)

These representations correspond to the di-
rect and the superdirect image [11] of A under
R, ie.

more or less A = R(A) and very A = R°(A)

These images respect all kinds of mathemati-
cal properties [4] which can be interpreted for
linguistic terms [3]. Figure 3 depicts fuzzy
sets for the linguistic terms for the SP. The
membership functions for the modified terms
were derived from those of Figure 1 using
fuzzy modifiers based on the fuzzy relation

R(z,y) =l(z — 1,z — 0.2,z + 0.2,z + 1,y)

Note that R is not a fuzzy equality nor a
fuzzy equivalence relation although it clearly
models approximate equality from an intu-
itive point of view (see also [6], [7]). If the
difference between two percentages = and y
is smaller than or equal to 0.2, then x and y
are considered to be approximately equal to
degree 1. If the difference is greater than or
equal to 1, they are not considered to be ap-
proximately equal (i.e. they are considered to
be approximately equal to degree 0). In be-
tween there is a gray area in which they are
considered to be approximately equal to some
degree between 0 and 1.

Furthermore we used the Lukasiewicz t-norm
and implicator which are defined by

TW(iC,y) = max($ +y—1, 0)

Iw(z,y) =min(l —z +y,1)
for all z and y in [0, 1].
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Figure 3: Inclusive interpretation: member-
ship functions for (from the left to the right)
very low, low, more or less low, more or less
average, average, more or less high, high, very
high.

In Figure 3 it is clear that the application of
fuzzy modifiers based on R can result in a
change of the kernel and the support, which
makes them intuitively more plausible than
the powering modifiers [16]. In the same fig-
ure it is shown that these fuzzy modifiers
based on R can be applied in a uniform way
to an increasing, a decreasing and a partially
increasing and decreasing membership func-
tion, which is not possible for shifting modi-
fiers [10, 13].

Combining fuzzy clustering, expert knowledge
and fuzzy modifiers, we have established the
membership functions of 8 linguistic terms for
each variable under consideration. Although,
using the superdirect image, it was possible
to generate a fuzzy set for very average as
well, we explicitly chose not to do this since in
the literature not everybody agrees that very
should be applied to a medium term such as
average (see [14]). To some people very aver-
age might even have a negative connotation.
Taken into account our goal — namely build-
ing a system that generates natural language
absenteeism reports for occupational physi-
cians and managers — we avoid terms that
might be ambiguous or that seem not natural
to some people.

4 Chosing the best term

To perform the interpretation of numerical
data into natural language expressions, we
have to chose the most suitable term for ev-
ery crisp numerical input, i.e. the most suit-
able fuzzy set. To achieve this we have
explored two techniques. Let us start by
noting that the fuzzy sets under considera-
tion can be divided in three groups, namely
.A == {Al,AQ,Ag}, B = {Bl,BQ} and
C= {01,02,03} with Al,AQ,Ag, Bl,BQ and
C1, s, C5 respectively corresponding to very
low, low, more or less low, more or less average,
average, more or less high, high, and very high.
Within every group the ordering C defined by,
for all A and B in F(X),

AC Biff (Vz € X)(A(z) < B(x))

is total, because the fuzzy relation R is reflex-
ive [4].

In [9] it is suggested to chose a threshold ¢ in
[0,1], meaning that all membership degrees
greater than c are considered as “maximal”.
Within a group the most suitable fuzzy set for
a crisp input x is chosen as the smallest fuzzy
set A (w.r.t. C) such that A(xz) > c. If a most
suitable term arises from more than 1 group
at the same time, then either the threshold
should be increased, or a preference relation
among the groups should be defined. If no
suitable term arises, then one may consider
decreasing the threshold.

Another option is to switch from the inclu-
sive interpretation to the non-inclusive inter-
pretation [12]. Until now we have assumed
that the ordering C is total in every group of
terms (in fact we have modelled the fuzzy sets
in this way). We have for instance made sure
that the membership function for very low is
included in the membership function for low.
The underlying semantics is that every per-
centage that is very low is also low. In this
interpretation the membership degree of x in
a fuzzy set A clearly corresponds to the degree
to which = satisfies the term modelled by A:
indeed the degree to which a percentage is low
is always greater than or equal to the degree
to which it is very low. To distinguish this



interpretation more clearly, the membership
functions could be labelled with a preceding
at least.

In the non-inclusive interpretation however
the fuzzy sets within a group do not necessar-
ily denote subsets nor supersets of each other,
but different, possibly overlapping categories.
In this interpretation the membership degree
of z in A corresponds to the degree to which
x is representative for the term modelled by
A. Or vice versa: if A(x) is the highest mem-
bership degree of x in all the fuzzy sets, then
among these, A models the most representa-
tive term for .

In [15] it is briefly explained how member-
ship functions for the non-inclusive interpre-
tation can be derived from those of the inclu-
sive interpretation. The method is described
for membership functions that are increas-
ing in the inclusive interpretation (namely the
modified linguistic terms of the increasing no-
tion annoyed), but we can extend it to mono-
tonic membership functions (increasing and
decreasing membership functions), i.e. those
of group A and group C. The non-inclusive
counterpart A’ of a fuzzy set A belonging to
either one of these groups can be established
using the greatest fuzzy set B of the same
group as A that is still included in A in the
following way:

A= AN co(B)

in which N and co are the usual fuzzy inter-
section and fuzzy complement respectively de-
fined by means of the minimum t-norm and
the standard negator N'(z) = 1 — z (need-
less to say generalization of these fuzzy logi-
cal connectives is possible). The non-inclusive
representation of low for example corresponds
to the inclusive representation of low but not
very low. If for some fuzzy set A the fuzzy set
B does not exist, then A’ = A.

Regarding group B we chose to model average
in the non-inclusive interpretation as average
but not more or less low and not more or less
high i.e.

B} = By N co(A3) Nco(Ch)
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Figure 4: Non-inclusive interpretation: mem-
bership functions for (from the left to the
right) very low, low, more or less low, average,
more or less high, high, very high.

We omitted more or less average from the list,
avoiding the open question whether in the
non-inclusive interpretation more or less aver-
age should still be represented by a superset
of average or rather by 2 “bumps”, one to the
left and one to the right of the membership
function for average. The resulting normalised
membership functions are depicted in Figure
4.

In this way about 20 analyses of different com-
panies were made in much less time than usu-
ally required. In these analyses an interpre-
tation was made about SP, AP, RP for the
overall figures and AP for the level of the sub-
sets of the overall diagnoses. The results were
very promising and were seemingly very much
the same as those made by experts. They
were even likely to be more consistent.

5 Conclusion and future work

The use of fuzzy set theory offers a way to
automate analyses of absenteeism. Suitable
membership functions for linguistic terms de-
scribing the variables can be derived automat-
ically from historical data, relying on fuzzy
clustering (for the basic terms) and fuzzy
modifiers (for the modified terms). This
makes the system very flexible and easy to
handle. Using the generated fuzzy sets, new



numerical data were transformed into natural
language expressions. The resulting absen-
teeism analyses were already very satisfactory
and could be used in every day practice.

Further work may involve the implementa-
tion of an approximate reasoning scheme that
allows for the interpretation of reintegration
solely from the SP and the AP without the
use of the RI. It would be interesting to com-
pare the results arising from such a system
against the results obtained with the method
presented in this paper. The ultimate goal is
the developement of a continuous monitoring
system on the computer that does not only
interprete numerical data regarding SP, AP,
FS, ... but also guides (or even replaces)
the manager in making appropriate decisions
such as “Continue present approach.” “Take
on special program to prevent back, neck and
shoulder complaints.” “Focus highly on rein-
tegration during the first year of illness.”
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