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Abstract— Rough set theory was introduced in 1982. Soon it
was combined with fuzzy set theory, giving rise to a hybrid model,
involving fuzzy sets and fuzzy relations, which appears to be a
natural, elegant generalization. In this paper we reveal that in the
fuzzification process an important step seems to be overlooked.
The most fascinating part is that this forgotten step arises from
the true essence of fuzzy set theory: namely, that an element can
belong to a given degree to more than one fuzzy set at the same
time.

I. INTRODUCTION

Pawlak [12] launched rough set theory as a framework for
the construction of approximations of concepts when only
incomplete information is available. The available information
consists of a set A of examples (a subset of a universe X , X

being a non-empty set of objects we want to say something
about) of a concept C, and a relation R in X . R models “indis-
cernibility” or “indistinguishability” and therefore generally is
a tolerance relation (i.e. a reflexive and symmetrical relation)
and in most cases even an equivalence relation (i.e. a transitive
tolerance relation). Rough set analysis makes statements about
the membership of some element y of X to the concept C of
which A is a set of examples, based on the indistinguishability
between y and the elements of A. To arrive at such statements,
A is approximated in two ways. An element y of X belongs
to the lower approximation of A if the equivalence class to
which y belongs is included in A. On the other hand y belongs
to the upper approximation of A if its equivalence class has a
non–empty intersection with A.

After a public debate reflecting rivalry between this new
theory and the slightly older fuzzy set theory, many people
have worked on the fuzzification of upper– and lower ap-
proximations (e.g. [6], [11], [14], [15], [17]). In doing so,
the central focus moved from elements’ indistinguishability
(w.r.t. their attribute values in an information system) to their
similarity—represented by a fuzzy relation R—again w.r.t. to
those attribute values: objects are categorized into classes with
“soft” boundaries based on their similarity to one another. A
concrete advantage of such a scheme is that abrupt transitions
between classes are replaced by gradual ones, allowing that
an element can belong (to varying degrees) to more than one
class. On another count the set A to be approximated can be
fuzzy as well in the new hybrid model, which is called “fuzzy
rough set theory”.

The most striking aspect of all the studies mentioned above
is that none of them tries to exploit the fact that an element
y of X can belong to some degree to several “soft similarity
classes” at the same time. This property does not only lie at the
heart of fuzzy set theory but is also crucial in the decision on
how to define lower and upper approximations. For instance, as
mentioned above, in traditional rough set theory, y belongs to
the lower approximation of A if the equivalence class to which
y belongs is included in A. But what happens if y belongs to
several “fuzzy equivalence classes” at the same time? Do we
then require that all of them are included in A? Most of them?
Or just one? And then, which one?

Traditional fuzzy rough set theory involves only one fuzzy
equivalence class. In this paper we explore what happens
if we abandon this most obvious choice. After recalling the
necessary preliminaries in Section 2, in Section 3 we define
alternative lower and upper approximations of a (fuzzy) set
A, based on different choices about which fuzzy equivalence
classes should be included in, or have a non-empty intersec-
tion, with A. In Section 4 we examine their properties, paying
significant attention to the role that the T -transitivity of the
fuzzy relation R plays in this game. This allows us to end with
an interesting conclusion and some ideas for further research.

II. PRELIMINARIES

Throughout this paper, let T and I denote a triangular
norm and an implicator respectively. Recall that a triangular
norm (t–norm for short) T is any increasing, commutative and
associative [0, 1]2 → [0, 1] mapping satisfying T (1, x) = x,
for all x in [0, 1]. A negator N is a decreasing [0, 1] →
[0, 1] mapping satisfying N (0) = 1 and N (1) = 0. N is
called involutive if N (N (x)) = x for all x in [0, 1]. Finally,
an implicator is any [0, 1]2 → [0, 1]–mapping I satisfying
I(0, 0) = 1, I(1, x) = x, for all x in [0, 1]. Moreover we
require I to be decreasing in its first, and increasing in its
second component. If T is a t–norm, the mapping IT defined
by, for all x and y in [0,1],

IT (x, y) = sup{λ|λ ∈ [0, 1] and T (x, λ) ≤ y} (1)

is an implicator, usually called the residual implicator (of T ).
If T is a t–norm and N is an involutive negator, then the
mapping IT ,N defined by, for all x and y in [0,1],

IT ,N (x, y) = N (T (x,N (y))) (2)
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