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In the past decade, various clustering algorithms based on the behaviour of real
ants were proposed. The main advantage of these algorithms lies in the fact that

no additional information, such as an initial partitioning of the data or the number

of clusters, is needed. In this paper we show how the combination of the ant-based
approach with fuzzy rules leads to an algorithm which is conceptually simpler,

more efficient and more robust than previous approaches.

1. Introduction

While the behaviour of individual ants is very primitive, the resulting be-
haviour on the colony-level can be quite complex. A particularly interest-
ing example is the clustering of dead nestmates, as observed with several
ant species under laboratory conditions1. By exhibiting only simple basic
actions and without negotiating about where to gather the corpses, ants
manage to cluster all corpses into 1 or 2 piles. The conceptual simplicity of
this phenomenon, together with the lack of centralized control and a priori
information, are the main motivations for designing a clustering algorithm
inspired by this behaviour.

Real ants are, because of their very limited brain capacity, often assumed
to reason only by means of rules of thumb2. Therefore in this paper we
propose a clustering approach in which the behaviour of the artificial ants
(and more precisely, their stimuli for picking up and dropping items) is
governed by fuzzy IF-THEN rules. The resulting algorithm is efficient,
robust and easy to use thanks to observed dataset independence of the
parameter values involved.
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2. Related work

Deneubourg et al.1 proposed an agent-based model to explain how ants
manage to cluster the corpses of their dead nestmates. Artificial ants (or
agents) are moving randomly on a square grid of cells on which some items
are scattered. Each cell can only contain a single item. Whenever an
unloaded ant encounters an item, this item is picked up with a probability
which depends on an estimation of the density of items of the same type
in the neighbourhood. If this density is high, the probability of picking up
the item will be low. When a loaded ant encounters a free cell on the grid,
the probability that this item is dropped also depends on an estimation of
the local density of items of the same type. However, when this density is
high, the probability of dropping the load will be high. Simulations show
that eventually all objects of the same type are clustered together.

Lumer and Faieta3 extended the model of Deneubourg et al., using a
dissimilarity-based evaluation of the local density, in order to make it suit-
able for data clustering. Unfortunately, the resulting number of clusters is
often too high and convergence is slow. Therefore, a number of modifica-
tions were proposed, by Lumer and Faieta themselves as well as by others
(e.g. 4,5). Since two different clusters can be adjacent on the grid, heuristics
are necessary to determine which items belong to the same cluster.

Monmarché6 proposed an algorithm in which several items are allowed
to be on the same cell. Each cell with a nonzero number of items corre-
sponds to a cluster. Each ant a is endowed with a certain capacity c(a).
Instead of carrying one item at a time, an ant a can carry a heap of c(a)
items. Probabilities for picking up, at most c(a) items from a heap and
for dropping the load on a heap are based on characteristics of the heap,
such as the average dissimilarity between items of the heap. When an ant
decides to pick up items, the c(a) items whose dissimilarity to the centre
of the heap under consideration is highest, are chosen. Two particularly
interesting values for the capacity of an ant a are c(a) = 1 and c(a) = ∞.
Monmarché proposes to apply this algorithm twice. The first time, the
capacity of all ants is 1, which results in a high number of tight clusters.
Subsequently the algorithm is repeated with the clusters of the first pass
as atomic objects and ants with infinite capacity. After each pass k-means
clustering is applied for handling small classification errors.

In a similar way, in 7 an ant-based clustering algorithm is combined with
the fuzzy c-means algorithm. Although some work has been done on com-
bining fuzzy rules with ant-based algorithms for optimization problems8,
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to our knowledge until now fuzzy rules have not yet been used to control
the behaviour of artificial ants in a clustering algorithm.

3. Fuzzy Ants

Our algorithm is in many ways inspired by the algorithm of Monmarché.
We will consider however only one ant, since the use of multiple ants on
a non-parallel implementation has no advantages. Instead of introducing
several passes, our ant can pick up one item from a heap or an entire
heap. Which case applies is governed by a model of division of labour in
social insects by Bonabeau et al.9. In this model, a certain stimulus and
a response threshold value are associated with each task a (real) ant can
perform. The response threshold value is fixed, but the stimulus can change
and represents the need for someone to perform the task. The probability
that an ant starts performing a task with stimulus s and response threshold
value θ is given by

Tn(s; θ) =
sn

sn + θn

where n is a positive integer.
Let us now apply this model to the problem at hand. A loaded ant can

only perform one task: dropping its load. Let sdrop be the stimulus associ-
ated with this task and θdrop the response threshold value. The probability
of dropping the load is then given by

Pdrop = Tni
(sdrop; θdrop) (1)

where i ∈ {1, 2} and n1, n2 positive integers. When the ant is only carrying
one item n1 is used, otherwise n2 is used. An unloaded ant can perform two
tasks: picking up one item and picking up all the items. Let sone and sall be
the respective stimuli and θone and θall the respective response threshold
values. The probabilities for picking up one item and picking up all the
items are given by

Ppickup one =
sone

sone + sall
· Tm1(sone; θone) (2)

Ppickup all =
sall

sone + sall
· Tm2(sall; θall) (3)

where m1 and m2 are positive integers.
The values of the stimuli are calculated by evaluating fuzzy if-then rules

as explained below. First we introduce some notations. Let E be a fuzzy
relation in X, i.e. a fuzzy set in X2, which is reflexive and TW -transitive
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(i.e. TW (E(x, y), E(y, z)) ≤ E(x, z), for all x, y and z in X) where X is the
set of items to be clustered and TW the  Lukasiewicz triangular norm defined
by TW (x, y) = max(0, x + y − 1), for all x and y in [0, 1]. For x and y in
X, E(x, y) denotes the degree of similarity between the items x and y. For
a heap H ⊆ X with centre c in X, we define avg(H) = 1

|H|
∑

h∈H E(h, c)
and min(H) = minh∈H E(h, c). Let E∗(H1,H2) be the similarity between
the centres of the heap H1 and the heap H2. Because of the limited space
we do not go into detail about how to define and/or compute the centre of
a heap, as this can be dependent on the kind of the data that needs to be
clustered.

Dropping items The stimulus for a loaded ant to drop its load L on a
cell which already contains a heap H is based on the average similarity A =
avg(H) and an estimation of the average similarity between the centre of H

and items of L. This estimation is calculated as B = TW (E∗(L,H), avg(L))
which is a lower bound due to our assumption about the TW -transitivity of
E and can be implemented much more efficiently than the exact value. If B

is smaller than A, the stimulus for dropping the load should be low; if B is
greater than A, the stimulus should be high. Since heaps should be able to
grow, we should also allow the load to be dropped when A is approximately
equal to B. Our ant will perceive the values of A and B to be Very High,
High, Medium, Low or Very Low. The stimulus will be perceived as Very
Very High, Very High, High, Rather High, Medium, Rather Low, Low,
Very Low or Very Very Low. These linguistic terms can be represented by
triangular fuzzy sets. The rules for dropping the load L onto an existing
heap H are summarized in table 1.

Picking up items An unloaded ant should pick up the most dissimilar
item from a heap if the similarity between this item and the centre of the
heap is far less than the average similarity of the heap. This means that
by taking the item away, the heap will become more homogeneous. An
unloaded ant should only pick up an entire heap, if the heap is already
homogeneous. Thus, the stimulus for an unloaded ant to pick up a single
item from a heap H and the stimulus to pick up all items from that heap
are based on the average similarity A = avg(H) and the minimal similarity
M = min(H) and can be inferred using fuzzy rules. Because of the limited
space, we omit the corresponding rule bases. For evaluating the fuzzy rules,
we used a Mamdani inference system with COG as defuzzification method.
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Table 1. Stimulus for dropping the load.

A is V. High A is High A is Medium A is Low A is V. Low

B is V. High RH H VH VVH VVH

B is High L RH H VH VVH

B is Medium VVL L RH H VH

B is Low VVL VVL L RH H

B is V. Low VVL VVL VVL L RH

The algorithm During the execution of the algorithm, we maintain a list
of all heaps. Initially there is a heap, consisting of a single element, for every
item in the dataset. Picking up an entire heap corresponds to removing a
heap from the list. At each iteration our ant randomly chooses one heap H

from the list and acts as follows.
If the ant is unloaded and if H consists of a single element, the element is

picked up with a fixed probability. Depending on the definition of the centre
of a heap, comparing the minimal and average similarity of a heap consisting
of two elements may not be meaningful. If H consists of two elements a

and b, one of them is picked up, with a probability (1 − E(a, b))k1 , where
k1 is a small positive integer (e.g. 2). Otherwise both elements are picked
up, with a fixed probability. If H consists of more than two elements, the
stimuli for picking up a single element and for picking up all elements are
inferred using the fuzzy rule bases and the corresponding probabilities are
given by Eqn. (2)-(3).

If the ant is loaded with a heap L, a new heap containing the load L

is added to the list of heaps with a fixed probability. Else, if H consists of
a single element a, and L consists of a single element b, L is merged with
H with a probability E(a, b)k2 , were k2 is a small positive integer (e.g. 2).
Else, if H consists of more than one element, the stimulus for dropping the
load is calculated and the probability that H and L are merged is given by
Eq. (1).

The most important parameters of the algorithm are n1, n2,m1,m2 in
Eqn. (1),(2) and (3). Good results were found within a wide range of values,
satisfying m1 = m2 < n1 < n2. Moreover, the values of the parameters
seem to be independent of the dataset, but are dependent on the definition
of the similarity measure E that is used. All response threshold values
were set to the modal value of the fuzzy set representing the linguistic term
“medium” for the stimulus.
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4. Concluding remarks

We have presented a clustering algorithm, inspired by the behaviour of
real ants simulated by means of fuzzy IF-THEN rules. Like all ant-based
clustering algorithms, no initial partitioning of the data is needed, nor
should the number of clusters be known in advance. Initial experimental
results indicate good scalability to large datasets. Outliers in noisy data are
left apart and hence do not influence the result, and the parameter values
appear to be dataset-independent which makes the algorithm robust.
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