
Fuzzy Sets and Systems149 (2005) 73–85
www.elsevier.com/locate/fss

Elicitation of fuzzy association rules from positive and
negative examples

M. De Cock∗, C. Cornelis, E.E. Kerre
Fuzziness and Uncertainty Modelling Research Unit, Department of Applied Mathematics and Computer Science,

Ghent University, Krijgslaan 281 (S9), 9000 Gent, Belgium

Available online 19 August 2004

Abstract

The aim of this paper is to provide a crystal clear insight into the true semantics of the measures of support
and confidence that are used to assess rule quality in fuzzy association rule mining. To achieve this, we rely on
two important pillars: the identification of transactions in a database as positive or negative examples of a given
association between attributes, and the correspondence between measures of support and confidence on one hand,
and measures of compatibility and inclusion on the other hand. In this way we remove the “mystery” from recently
suggested quality measures for fuzzy association rules.
© 2004 Published by Elsevier B.V.
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1. Introduction

Association rules[1] provide a convenient and effective way to identify and represent certain depen-
dencies between attributes in a database. Originally, association rules emerged in the domain of shops
and customers; the basic idea is to identify frequent itemsets in market baskets, i.e., groups of products
frequently bought together, so storekeepersmay use this information to decide onwhat to put on sale, how
to place merchandize on shelves to maximize a cross-selling effect, how to advertise, etc. Evidently, the
application of association rules is not limited to marketing problems: in fact they can shed light on a wide
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range of knowledge discovery and decisionmaking problems.Given themassive data archivesmaintained
by most firms nowadays, it comes as no surprise that easy-to-handle and easy-to-grasp mechanisms like
association rules have risen to great popularity.
Association rule mining is traditionally performed on a data table with binary attributes. Conceptually,

a recordx in the data table represents a customer transaction, whereas the attributes represent items that
may be either purchased in that transaction, or not. Therefore, for each attributeA, A(x) is either 1 or
0 indicating whether or not itemA was bought in transactionx. An association rule is an expression of
the formA ⇒ B in whichA andB are attributes, such ascheese⇒ bread. The meaning is that when
A is bought in a transaction,B is likely to be bought as well. In an extended approach, the antecedent
and the consequent of an association rule are sets of attributes. Considering this more general definition,
however, would complicate the notation without providing additional benefit for the issues we want to
deal with in this paper. Furthermore, since mining algorithms tend to generate too many rules, there is a
trend to focus on simple association rules, i.e., those containing only one attribute in the consequent, and
use them as building blocks to construct more general rules if required[8,9].
Association rules can be rated by a number of quality measures (for a recent, comprehensive overview

of what is available, we refer to[24]), among whichsupportandconfidencestand out as the two essential
ones.Supportmeasures thestatistical significanceof acandidate ruleA ⇒ B as the fractionof transactions
inwhichbothAandBwerebought.Confidenceassesses the strengthof a rule as the fractionof transactions
containingA that containB as well. The basic problem of mining association rules is then to generate all
association rulesA ⇒ B that have support and confidence greater than user-specified thresholds.
In most real life applications, databases contain many other attribute values besides 0 and 1. Very

common for instance are quantitative attributes such asageor income, taking values from a partially
ordered, numerical scale, often a subset of the real numbers. One way of dealing with a quantitative
attribute likecostis to replace it by a few other attributes that form a crisp partition of the range of the
original one, such aslow = [0,100[, medium = [100,300[ andhigh = [300, +∞[. Now we can
consider these new attributes as binary ones that have value 1 if thecostattribute equals a value within
their range, and 0 otherwise. In this way, the problem is reduced to the mining procedure described above
(the generated rules are now called quantitative association rules[23]). From an intuitive viewpoint,
it makes more sense, however, to draw values from the interval[0,1] (instead of just{0,1}), to allow
records to exhibit a given attribute to a certain extent only. In this way binary attributes are replaced
by fuzzy ones. The corresponding mining process yields fuzzy (quantitative) association rules (see, e.g.,
[4–7,9,11,13,15–17]).
In the traditional approach to association rule mining algorithms (including quantitative and fuzzy

association rule mining), one merely thinks in terms of positive examples: especially when determining
the degree of support, only the number of transactions in favour of the rule is accounted for.As we argued
in [11], the remaining transactions can still be partitioned into those that actually violate the rule, and
thosewhich do not carry any relevant information. In other words, “not being a positive example" of a rule
is not the same as “being a negative example". Realizing this provides deeper insight into the semantics
of the quality measures as we will show in this paper.
On another count, it is sometimes also useful to detect negative associations (denotedA ⇒ co B),

whose intendedmeaning is that transactions containingAare unlikely to containBaswell.As a somewhat
frivolousexample,wemight quotelucky-in-love⇒ co (lucky-in-games). Suchpatternshave receivedquite
some attention lately (see, e.g.,[6,21,26,28]); we will show that they can be embedded elegantly into our
framework of positive and negative examples.
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The goal of this paper is not to introduce yet another series of quality measures, but to shine a bright
light on what has been proposed so far, with a specific focus on the quality measures of support and
confidence, and to show how the pieces of this puzzle neatly fit together. Section2 deals with the first
pillar of our argument: the identification of transactions in a database as positive or negative examples of
an association between attributes. Along the way we recall the basic concepts of support and confidence,
initially in the framework of crisp association rules. Soon, however, we move on to the mining of fuzzy
association rules as it is specifically in this setting that new and seemingly aberrant quality measures
have been proposed recently, such as non-symmetrical measures of support. The second important pillar
in this paper is that support and confidence measures should actually be thought of as compatibility and
inclusion measures, which we discuss in Section3. Leaning on both pillars, in Section4 we take the
mystery out of some recently proposed quality measures for fuzzy association rules by providing crystal
clear insight into their true semantics.

2. Positive and negative examples

2.1. Crisp association rules

Suppose we have a non-empty data tableX containing records described by their values for binary
attributesA belonging to a setA . Conceptually, the attributes correspond to the items which customers
may purchase, while the records represent the transactions or market baskets. For an attributeA and a
recordx ∈ X,A(x) = 1 means itemAwas purchased in transactionx, whileA(x) = 0 meansAwas not
bought. In this way,A can also be thought of as the set of transactions containing the item, i.e.,x ∈ A iff
A(x) = 1, andx /∈ A iff A(x) = 0. Likewise,co A is the set of transactions not containing the item, i.e.,
x ∈ co A iff A(x) = 0, andx /∈ co A iff A(x) = 1.
LetA, B ∈ A . To decide whether one ofA ⇒ B orA ⇒ co B is a worthwhile association rule, we

can use a number of quality measures to rate these potential rules. Most commonly used are the measures
of support and confidence, which are outlined below.

Support . The support of an association ruleA ⇒ B is usually defined as

supp(A ⇒ B) = |A ∩ B|
|X| , (1)

i.e., the number of elements belonging to bothA andB, scaled to a value between 0 and 1. The idea
behind the definition of support is to measure the statistical significance by countingpositive examples,
i.e., transactions that explicitly support the hypothesis expressed by the association rule. It is worth
noting that the positive examples ofA ⇒ B are also those of the ruleB ⇒ A, i.e., support is a symmetric
measure. Hence, as can be expected, it only reveals part of the global picture. This is why we also need
the confidence measure, to assess the strength of a rule.

Conf idence. Traditionally, if a ruleA ⇒ B generates a support exceeding a user-specified threshold,
it is meaningful to compute its confidence, i.e., the proportion of correct applications of the rule.

conf (A ⇒ B) = |A ∩ B|
|A| . (2)
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Table 1
The nature of transactionxw.r.t. rulesA ⇒ B, B ⇒ A andA ⇒ co B

x A ⇒ B B ⇒ A A ⇒ co B

Positive example x ∈ A ∧ x ∈ B x ∈ A ∧ x ∈ B x ∈ A ∧ x /∈ B

Non-positive example x /∈ A ∨ x /∈ B x /∈ A ∨ x /∈ B x /∈ A ∨ x ∈ B

Negative example x ∈ A ∧ x /∈ B x /∈ A ∧ x ∈ B x ∈ A ∧ x ∈ B

Non-negative example x /∈ A ∨ x ∈ B x ∈ A ∨ x /∈ B x /∈ A ∨ x /∈ B

Note that|A| will not be 0 if we assume that theconfidenceis computed only when thesupportexceeds
a certain threshold (which should be greater than 0 to be meaningful). It is easy to see that

conf (A ⇒ B) = supp(A ⇒ B)

supp(A ⇒ B) + supp(A ⇒ co B)
. (3)

Having identified the “supporters" of A ⇒ B as positive examples, we can ask ourselves what a
negative exampleof the same rule might look like. It is clear that a transaction violates the ruleA ⇒ B

as soon as it containsA but notB. As opposed to positive examples, a negative example ofA ⇒ B is
no negative example ofB ⇒ A, and vice versa. Also, the complement of the set of positive examples
does not necessarily equal that of negative examples, just like a “non-negative example” differs from
a “positive example". On the other hand, a positive example ofA ⇒ co B is a negative example of
A ⇒ B, and vice versa. This is summarized in Table1. Hüllermeier[15] defined an alternative measure
which calculates the ratio of support for the positive ruleA ⇒ B and the negative ruleA ⇒ co B, or
equivalently, the number of positive examples of the rule divided by the number of negative examples

confn(A ⇒ B) = supp(A ⇒ B)

supp(A ⇒ co B)
. (4)

It was noted in[15] that (2) and (4) are equivalent in the sense that, for� ∈ [0,1],

conf (A ⇒ B)�� ⇐⇒ confn(A ⇒ B)�
�

1− �
. (5)

As opposed to (1)–(3), whose values belong to[0,1], the value of (4) can be any positive real number.
This makes the choice of a meaningful threshold harder. Furthermore the mining algorithm should have
a built-in test to verify the case “supp(A ⇒ co B) = 0" which corresponds to infinite confidence in a
rule (as there are no negative examples).
It is interesting that Dubois et al.[13] also distinguish between positive and negative examples that are

grouped into sets they callS+ andS−, respectively. Furthermore, they introduce the class of irrelevant
examplesS± as

S± = {x ∈ X | x �∈ A}
One can easily verify that our classes of non-positive and non-negative examples are obtained as unions
of S± with the set of positive and negative examples, respectively, i.e.,

x is a non-positive example⇐⇒ x ∈ S− ∪ S±,
x is a non-negative example⇐⇒ x ∈ S+ ∪ S±.

Also, whileS−, S+ andS± form a partition ofX, this is clearly not the case for the four classes we defined.
The most important reason we choose to consider them is that they all give rise to different measures.
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Definition 1. The quality measures M1,M2,M3, and M4 of the ruleA ⇒ B are, respectively, defined as

M1(A ⇒ B) = |A ∩ B|
|X| , (6)

M2(A ⇒ B) = |co A ∪ co B|
|X| , (7)

M3(A ⇒ B) = |A ∩ co B|
|X| , (8)

M4(A ⇒ B) = |co A ∪ B|
|X| , (9)

whereco is the set-theoretical complement. M1,M2,M3 and M4, respectively, correspond to the number
of positive examples of the rule, the number of non-positive examples, the number of negative examples,
and the number of non-negative examples. In[11] these measures are therefore called minimum support,
maximum opposition, minimum opposition, and maximum support, respectively.

The following propositions can be easily verified:

Proposition 1.

M1(A ⇒ B)�M4(A ⇒ B), (10)

M3(A ⇒ B)�M2(A ⇒ B). (11)

Proposition 2.

M2(A ⇒ B) = 1−M1(A ⇒ B), (12)

M3(A ⇒ B) = 1−M4(A ⇒ B). (13)

Hence, only two measures are independent. We can for instance choose to work with M1 and M4.
The measure M1 corresponds to the symmetrical support measure (supp) of formula (1), while M4 is
a non-symmetrical measure taking into account all examples that do not violate the ruleA ⇒ B. The
correspondences between the new measures can also be expressed in terms of positive and negative
association rules.

Proposition 3.

M3(A ⇒ co B) = M1(A ⇒ B), (14)

M2(A ⇒ co B) = M4(A ⇒ B). (15)

Note thatconfn can be expressed in terms of the measures from Definition1:

confn(A ⇒ B) = M1(A ⇒ B)

M3(A ⇒ B)
. (16)
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2.2. Fuzzy association rules

Recall that a fuzzy setA in X is anX → [0,1]mapping. Fuzzy-set-theoretical counterparts of comple-
mentation, intersection, and union are as usual defined by means of a negator, a t-norm, and a t-conorm.
Recall that an increasing, associative and commutative[0,1]2 → [0,1] mapping is called a t-normT if
it satisfiesT (x,1) = x for all x in [0,1], and a t-conormS if it satisfiesS (x,0) = x for all x in [0,1].
A negatorN is a decreasing[0,1] → [0,1] mapping satisfyingN (0) = 1 andN (1) = 0. ForA andB
fuzzy sets inX andx in Xwe define

coN A(x) = N (A(x)),

A ∩T B(x) = T (A(x), B(x)),

A ∪S B(x) = S (A(x), B(x)).

Let A(x) be the degree to which an attributeA is bought in a transactionx (or in a broader context: the
degree to whichx satisfies the attribute). This wayA can be thought of as a fuzzy set in the universe of
transactions, and the measures discussed above have to be generalized accordingly. The cardinality of a
fuzzy set in a finite universeX was introduced as a generalization of the classical concept of cardinality
of a crisp set[12]. It is defined by

|A| =
∑
x∈X

A(x).

Replacing the set-theoretical operations inDefinition1by their fuzzy-set-theoretical counterparts (defined
by means of a negatorN , a t-normT , and a t-conormS ), we obtain

Definition 2.

M1(A ⇒ B) = 1

|X|
∑
x∈X

(A ∩T B)(x) (17)

M2(A ⇒ B) = 1

|X|
∑
x∈X

(coN A ∪S coN B)(x), (18)

M3(A ⇒ B) = 1

|X|
∑
x∈X

(A ∩T coN B)(x), (19)

M4(A ⇒ B) = 1

|X|
∑
x∈X

(coN A ∪S B)(x). (20)

Since

T (A(x), B(x))�B(x)�S (N (A(x)), B(x))

and

T (A(x), N (B(x)))�N (B(x))�S (N (A(x)), N (B(x)))
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for all x in X, Proposition1 still remains valid when the measures are defined by (17)–(20). The natural
extension of Proposition2 linking opposition and supportmeasures, holdswhenN is the standard negator
N s (defined byN s(x) = 1− x for all x in [0,1]) and(T , S , N s) is a de Morgan triplet, i.e.,

T (x, y) = N s(S (N s(x), N s(y)))

for all xandy in [0,1]. For a negative fuzzy association rule, we have to specify which negatorN we are
using. For simplicity, we will assumeN = N s and continue to writeA ⇒ co B. It is clear that equalities
(14) and (15) can also easily be retained in this way.
Generalizing the confidence measures listed above to the fuzzy case, the following formulas are ob-

tained:

conf (A ⇒ B) =
∑

x∈X(A ∩T B)(x)∑
x∈X A(x)

, (21)

conf2(A ⇒ B) =
∑

x∈X(A ∩T B)(x)∑
x∈X(A ∩T B)(x) + ∑

x∈X(A ∩T coN B)(x)
. (22)

Note that the equality ofconf andconf2 (cf. formula (3)) is not automatically transferred to the fuzzy
case, since∑

x∈X

(A ∩T B)(x) +
∑
x∈X

(A ∩T coN B)(x) =
∑
x∈X

A(x) (23)

does not always hold. As a consequence, the link (5) is not always maintained either. However, as proved
in [2], if N = N s, then (23) holds iff T = T P. As mentioned in[13], this choice of parameters is also
mandatory if one wants to ensure that the sum of the respective degrees to which a transactionx is a
positive example (i.e.,T (A(x), B(x))), a negative example (i.e.,T (A(x), N s(B(x)))) and an irrelevant
example (i.e.,N s(A(x))) is equal to 1. In our opinion, however, dismissing a panoply of otherwise often
meaningful t-norms is a very high price to pay to enforce a property that is similar in spirit to the law
of the excluded middle in classical set theory. We do, however, have the following relationship between
conf andconf2.

Proposition 4. If conf andconf2 are defined by a t-normT such that
• T �T P, thenconf (A ⇒ B)�conf2(A ⇒ B)

• T �T P, thenconf (A ⇒ B)�conf2(A ⇒ B)

3. Inclusion and compatibility measures

In fuzzy set theory, inclusion is, by default, defined as follows: forA andB fuzzy sets inX, A ⊆ B if
and only if

(∀x ∈ X)(A(x)�B(x)),

i.e.,A ⊆ B if and only if the membership function ofA fits beneath the membership function ofB. While
in many theoretical and practical settings this two-valued characterization of subsethood suffices, it could
be argued that the definition is overly restrictive: just as an element can belong to a fuzzy set to varying
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degrees, so wemay also want to talk about a fuzzy set being “more or less” a subset of another one. Many
researchers[3,10,14,18,19,22,27]have tried to capture this intuition by proposing concrete operatorsInc
that take a couple of fuzzy sets(A, B) as their input and return a valueInc(A, B) in [0,1] indicating the
degree of subsethood ofA toB.
Typically, to define fuzzy subsethood one takes a definition of classical set inclusion and tries to extend

(“fuzzify”) it to apply to fuzzy sets. Belowwe quote three distinct, but essentially equivalent,1 definitions
of the inclusion ofA intoB, whereA andB are crisp subsets ofX:

A ⊆ B ⇐⇒ (∀x ∈ X)(x ∈ A ⇒ x ∈ B), (24)

⇐⇒ A = ∅ or
| A ∩ B |

| A | = 1, (25)

⇐⇒ | co A ∪ B |
| X | = 1. (26)

While (24) is stated in strictly logical terms, the other two are based on counting the elements of a set, i.e.,
on cardinality, and have a probabilistic (i.e., frequentist) touch about them. It is therefore not surprising
that their respective generalizations to fuzzy set theory cease to be equivalent.Wemight roughly state that
adepts of the different crisp definitions have put fuzzy subsethood on two separate tracks, one logic-based,
the other frequency-based. One situation where this distinction comes to light is when one tries to mould
fuzzy inclusion measures into axiomatic characterizations by listing desirable properties for them.
For instance, formula (24) canbegeneralized to fuzzy sets by replacing the implication byan implicator.

Recall that an implicatorI is a [0,1]2 → [0,1] mapping such thatI (x, .) is increasing andI (., x) is
decreasing, andI (1, x) = x for all x in [0,1], andI (0,0) = 1.An inclusionmeasure satisfying desirable
axioms is then given by

Inc1(A, B) = inf
x∈X

I (A(x), B(x))

However, this approach has certain disadvantages in applications. Indeed, if two fuzzy setsA andB are
equal everywhere, except in the pointx for whichA(x) = 1 andB(x) = 0, thenInc1(A, B) = 0. One
can think of very concrete instances in which this indeed makes no sense. Imagine for instance that we
are to evaluate to what extent the young people in a company are also rich. Testing subsethood of the
fuzzy set of young workers into that of rich workers should then be based on the relative fraction (i.e.,
the frequency) of good earners among the youngsters, and not on whether there exists or does not exist
one poor, young employee. This observation has led researchers to consider extensions to definition (25)
of crisp subsethood. IfA andB are fuzzy sets, then one can define the subsethood ofA intoB as

Inc2(A, B) = |A ∩T B|
|A|

if A �= ∅, and 1 otherwise (see, e.g.,[19]).
In formula (26) the presence of implication is also very clear. For propositionsp andq in binary logic,

p ⇒ q has the same truth value as¬p ∨ q. The counterpart in fuzzy logic is the so-called S-implicator

1Arguably, (24) is more general since it can also deal with infinite sets.
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Table 2
Well-known t-norms and t-conorms
t-norm t-conorm

T M(x, y) = min(x, y)

T P(x, y) = xy

T W(x, y) = max(x + y − 1,0)

S M(x, y) = max(x, y)

S P(x, y) = x + y − xy

S W(x, y) = min(x + y,1)

Table 3
Well-known implicators

S-implicator Residual implicator

I S M (x, y) = max(1− x, y) I T M (x, y) =

{
1 if x �y

y otherwise

I S P(x, y) = 1− x + xy I T P(x, y) =

{
1 if x �y
y
x otherwise

I S W (x, y) = min(1− x + y,1) I S W (x, y) = min(1− x + y,1)

induced byS andN , defined by

I S ,N (x, y) = S (N (x), y)

for all xandy in [0,1]. Generalizing formula (26) hence gives rise to a softened version ofInc1 in which
the supremum is replaced by taking the average over all elements ofX:

Inc3(A, B) = 1

|X|
∑
x∈X

I S ,N (A(x), B(x))

Another well-studied class of implicators are the residual implicatorsI T , induced by a t-normT in the
following way:

I T (x, y) = sup{�|� ∈ [0,1] andT (x, �)�y}
for all x andy in [0,1]. Tables2 and3 recall some well-known t-norms and t-conorms, as well as the
implicators induced by them and the standard negator (which is omitted in the notation).
Another important kind of comparison measures for fuzzy sets, the so-called compatibility measures,

assess their degree of overlap (see, e.g.,[25]). The so-called simple matching coefficient

Com1(A, B) = |A ∩T B|
|X| = 1

|X|
∑
x∈X

T (A(x), B(x))

is the average degree to which the fuzzy setsA andB together span the universeX. It is in a sense a
softened version of

Com2(A, B) = sup
x∈X

T (A(x), B(x))
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Table 4
Comparison of the contribution of some transactions to M4(A ⇒ B)

A(x) B(x) I S M I S P I S W I T M I T P I T W

0.1 0.2 0.9 0.92 1 1 1 1
0.2 0.1 0.8 0.82 0.9 0.1 0.5 0.9
0.6 0.8 0.8 0.88 1 1 1 1
0.8 0.6 0.6 0.68 0.8 0.6 0.75 0.8
0.5 0.5 0.5 0.75 1 1 1 1
0.2 0.8 0.8 0.96 1 1 1 1
0.8 0.2 0.2 0.36 0.4 0.2 0.25 0.4

which is the height of theT -intersection of fuzzy setsA andB. Compatibility measures are symmetrical
but in general not reflexive.

4. Into the semantics of quality measures

Forgettingabout the special variants of the confidencemeasure (namelyconf2 andconfn) for amoment,
to assess the quality of a fuzzy association rule, so far we have the measure of confidence

conf (A ⇒ B) = |A ∩T B|
|A| .

Note that it coincides withInc2. Furthermore we have the “independent" measures M1 and M4 from
Definition2, with M1 corresponding to the measure of support that is commonly used for mining fuzzy
association rules, i.e.,

supp(A ⇒ B) = |A ∩T B|
|X| and M4(A ⇒ B) = |co A ∪S B|

|X| .

Let us first consider these last two measures in terms of positive and negative examples:supp(A ⇒ B)

is the number of positive examples of the candidate ruleA ⇒ B and coincides with the compatibility
measureCom1, while M4(A ⇒ B) corresponds to the number of non-negative examples and coincides
with the inclusion measureInc3 for I an S-implicator. The question arises whether we can substitute
the S-implicator in M4 (or Inc3) by, e.g., a residual implicator. Table4 shows the different contributions
of several transactionsx to M4(A ⇒ B) for the implicators of Table3. As explained in Section2, this
contribution corresponds to the degree to whichx is a non-negative example. In most of the cases the
S-implicators (on the left) and the residual implicators (on the right) behave rather similar. A striking
difference, however, appears in the second example. It is caused by the low value ofA(x) which is taken
into account much more by the S-implicators than by the residual implicators. The difference is greatest
for I T M which completely ignoresA(x), and smallest forI T W as the implicators induced byS W and
T W coincide.
An example can be called non-negative if it does not contradict the rule; so either if it is in favour of

the rule, or if it does not say anything about the rule. The latter situation arises whenA(x) is small. In this
case S-implicators tend to always identifyx as a non-negative example, while some residual implicators
overlook it for lowB(x) values. Indeed ifA(x) is low, thenN (A(x)) tends to be high and hence so
doesI S ,N (A(x), B(x)) = S (N (A(x)), B(x)). If on the other hand we use a residual implicatorI T ,
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referring to the definition, we are basically looking for the largest� such thatT (A(x), �)�B(x). If
A(x)�B(x) then�will be 1 and the transaction is identified as a non-negative example. However ifA(x)

is low butB(x) is even lower, we are in a way relying on� to keepT (A(x), �) from surpassingB(x).
Therefore� tends to be low (especially ifT is large), hencex is not identified as a non-negative example.
In [15], Hüllermeier suggests the following implication-based measure of support for a fuzzy associa-

tion ruleA ⇒ B:

supp1(A ⇒ B) =
∑
x∈X

I (A(x), B(x)),

whereI is an implicator. Note that by dividing it by|X|weobtain a formula similar toInc3. The rationale
behind it is that a transactionx with A(x) = 0.6 andB(x) = 0.4, only contributes to degree 0.4 to the
commonly used support (which is our formula (17) defined by means ofT M). This is considered to be
low since, in the words of[17] “x does hardly violate(and hence supports) the rule". We fully agree
on the first claim (x is a non-negative example to a high degree) but not on the second one (being a
non-negative example does not imply being a positive example).Although the introduction of implicators
in the measures used for mining fuzzy association rules in itself can be meaningful,[17] does not respect
the fundamental difference between positive and non-negative examples, which becomes evident when
examining those transactions that do not really tell us something about the rule (i.e., that have a low
membership degree inA). To deal with this problem of“trivial support" , Hüllermeier suggests to extend
the measure of support to

supp2(A ⇒ B) =
∑
x∈X

T (A(x), I (A(x), B(x))).

However, if I is the residual implicator induced by a continuous t-normT then supp2(A ⇒ B) =∑
x∈X min(A(x), B(x)) (see, e.g.,[20]) as is also noted in[17]. Therefore, in this case the new measure

of support introduced in[15] reduces to the commonly used one, and hence does not offer anything
new. For this reason we do not fully agree with the claim of[13] that whereas the traditional support
measure (i.e.suppor M1) is in line with the conjunction-based approach to modelling fuzzy rules, the
above-defined measuresupp2 follows the tradition of implication-based fuzzy rules.
On another count, in[15–17]a clear preference of residual implicators over S-implicators is expressed,

which seems to be in conflict with our findings described above. However, the arguments raised in favour
of residual implicators in those papers, basically amount to the fact that S-implicators detect non-negative
examples overlooked by most residual implicators, namely those that are not relevant to the rule. This is
considered to be an unwanted side effect because Hüllermeier is exclusively trying to identify positive
examples. As soon as one realizes that not the positive but the negative examples (and hence also the
non-negative examples) can be revealed by means of an implicator, the preference of S-implicators over
residual implicators becomes very natural.
Within the literature on fuzzy association rules there exists another view on the use ofInc3 as well.

Chen et al.[9] call this measure “degree of implication” and use it to replace the traditional confidence
measure. This should not come as a great surprise, since their reliance onInc3 yields just another way
of expressing the subsethood ofA intoB.
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5. Concluding remarks

Throughout the literature the following quality measures are prominent:

(1) supp(A ⇒ B) 1
|X|

∑
x∈X

T (A(x), B(x)) Com1

(2)M4(A ⇒ B) 1
|X|

∑
x∈X

I S ,N (A(x), B(x)) Inc3

(3)conf (A ⇒ B) 1
|A|

∑
x∈X

T (A(x), B(x)) Inc2

The first and the third measure are generally accepted as measures of support and confidence, respec-
tively. They assess the significance and the strength of a fuzzy association rule. They coincide with a
compatibility measure and an inclusion measure from fuzzy set theory. The second measure is perceived
by some as an alternative support measure, and by others as an alternative measure to assess the strength
(of implication) of a rule. We prefer the latter view since this second measure is non-symmetrical and
coincides with another inclusion measure.
Furthermore, when counting non-negative examples it is more meaningful to use an S-implicator than

a residual implicator in measure (2). Since association rule mining is concerned with finding frequent
patterns in databases it seems more natural to use cardinality based rather than logical compatibility and
inclusion measures, which explains whyInc1 andCom2 are not met in literature on fuzzy association
rules.
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