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Abstract: By tracing intuitionistic fuzzy sets back to the underlying algebraic
structure that they are defined on (a complete lattice), they can be embedded in
the well-known class of L—fuzzy sets, whose formal treatment allows the definition
and study of order—theoretic concepts such as triangular norms and conorms, nega-
tors and implicators, as well as the development of intuitionistic fuzzy relational
calculus. In this chapter we study the intuitionistic fuzzy relational direct and su-
perdirect image. An important aspect of our work, differentiating it from the study
of L-fuzzy relational images in general, concerns the construction of an intuitionistic
fuzzy relational image from the separate fuzzy relational images of its membership
and non—membership function. We illustrate our results with two applications: the
representation of linguistic hedges, and the development of a meaningful concept of
an intuitionistic fuzzy rough set.

Keywords: intuitionistic fuzzy relational calculus, direct and superdirect image,
linguistic hedge, intuitionistic fuzzy rough set

1 INTRODUCTION

Intuitionistic fuzzy sets (IFSs for short), an extension of fuzzy sets, were introduced
by Atanassov [1] and are currently generating a great deal of interest. IFS theory
basically defies the claim that from the fact that an element x “belongs” to a given
degree (say pa(z)) to a fuzzy set A, naturally follows that = should “not belong” to
A to the extent 1 — pa(x), an assertion implicit in the concept of a fuzzy set. On the
contrary, IFSs assign to each element z of the universe both a degree of membership
pa(z) and one of non—-membership v4(z) such that

pa(z) +va(z) <1

thus relaxing the enforced duality va(z) = 1 — pa(z) from fuzzy set theory. Obvi-
ously, when pa(z) + va(z) = 1 for all elements of the universe, the traditional fuzzy
set concept is recovered.

Wang and He [32], and later also Deschrijver and Kerre [17], noticed that IFSs
can be considered as special instances of Goguen’s L—fuzzy sets [19], so every concept



definable for L—fuzzy sets is also available to IFS theory. In this spirit, in [16, 18]
suitable definitions and representation theorems for the most important intuition-
istic fuzzy connectives have been derived; negators, triangular norms and conorms,
and implicators can be used to model the elementary set—theoretical operations of
complementation, intersection, union, and inclusion as well as the logical operations
of negation, conjunction, disjunction, and implication. In this way, slowly but surely,
IFSs start giving away their secrets.

Using these building blocks, we can arrive at the study of more complex frame-
works such as intuitionistic fuzzy relational calculus (IF relational calculus for short).
The importance of L—fuzzy relational calculus in computer science can hardly be
overestimated. It has already proven its usefuleness in fields such as approximate
reasoning (modelling linguistic IF-THEN rules as fuzzy relations, see e.g. [34]),
fuzzy morphology for image processing (see e.g. [25]), fuzzy preference modelling
(see e.g. [9]), and for obvious reasons also fuzzy relational databases. Furthermore
benefits of fuzzy relations for the search in unstructured environments is becoming
more and more clear (see [14] for a recent overview on the construction of fuzzy
term—term relationships). In this chapter we will illustrate our results in yet two
other applications, namely intuitionistic fuzzy rough sets for knowledge discovery,
and the mathematical representation of linguistic terms for computing with words.

At the heart of L—fuzzy relational calculus and very closely related to the com-
position of L—fuzzy relations, are the notions of direct and superdirect image of an
L—fuzzy set under an L—fuzzy relation. Most of the research on L—fuzzy relational
images so far has been carried out for L = [0, 1]. We refer to [11, 26] for an overview
of both established theoretical properties and applications. The mapping of elements
of the universe to the interval [0, 1] however implies a crisp, linear ordering of these
elements, making [0, 1]-valued fuzzy set theory inadequate to deal with incompa-
rable information. Attention to other complete lattices L of membership degrees is
growing. In [8] a thorough study of L—fuzzy relational images was carried out, and
in [13] their use for the representation of linguistic hedges — such as very and more
or less — was proposed and investigated. The approach boasts in general a lot of
nice properties as well as many practical and intuitive advantages over “traditional”
modifiers such as powering [33] and shifting hedges [24].

IF relational calculus is situated between the extremes of the traditional [0, 1]-
fuzzy relational calculus (or simply called fuzzy relational calculus) on one hand, and
the very general notion of L—fuzzy relational calculus on the other. As a consequence
it provides a more expressive formalism than traditional fuzzy relational calculus,
but at the same time treasures special properties and a specific behavior that is
lost when moving onto the more general L—fuzzy relational calculus. This makes IF
relational calculus an attractive topic of study. An important issue, differentiating
it from the study of L—fuzzy relational images in general, is what we call the “divide
and conquer” rationale: taking images of membership and non-membership func-
tion separately, ensuring that the resulting construct is still an IFS, thus effectively
breaking up our original problem into simpler, better-understood tasks.

However the reader should not get the impression that IFS theory comes down
to merely applying ideas from fuzzy set theory twice, once for the membership
and once for the non-membership function. Indeed throughout this chapter it will
become clear that the “divide and conquer” approach is rather a challenge than a
triviality in IFS theory, and sometimes even impossible. However some conditions
implied on the logical operators involved can allow for some results in this direction.



This chapter is an extended version of [4] in which the use of IF relational images
for the representation of linguistic hedges was introduced. We will recall this in
Section 4. In Section 5 we additionally discuss IF rough sets as a second application,
drawing upon results from [6]. First however we give the necessary preliminaries on
IFSs (Section 2), and we study IF relational images in general (Section 3).

2 Preliminaries

2.1 L—fuzzy sets

In 1967 Goguen formally introduced the notion of an L—fuzzy set with a membership
function taking values in a complete lattice L [19]. In this paper we assume that (L,
<) is a complete lattice with smallest element 0z and greatest element 11. An L—
fuzzy set A in a universe X is a mapping from X to L, again called the membership
function. The L—fuzzy set A in X is said to be included in the L—fuzzy set B in X,
usually denoted by A C B, if

A(z) <1 B(x)

for all z in X. An L—-fuzzy set R in X x X is called an L—fuzzy relation on X. For
all z and y in X, R(z,y) expresses the degree to which z and y are related through
R. For every y in X, the R-foreset of y is a L—fuzzy set in X, denoted as Ry and
defined by

Ry(z) = R(z,y)
for all z in X.

L—fuzzy-set—theoretical operations such as complementation, intersection, and
union, can be defined by means of suitable generalizations of the well-known con-
nectives from boolean logic. Negation, conjunction, disjunction and implication can
be generalized respectively to negator, triangular norm, triangular conorm and im-
plicator, all mappings taking values in L. More specifically, a negator in L is any
decreasing L — L mapping N satisfying N'(0r) = 1r. It is called involutive if
NN (x)) = z for all z in L. A triangular norm (t-norm for short) 7 in L is any
increasing, commutative and associative L? — L mapping satisfying 7 (1z,z) = z,
for all z in L. A triangular conorm (t-conorm for short) § in L is any increasing,
commutative and associative L> — L mapping satisfying S(0r,z) = «, for all z in
L. The N-complement of an L-fuzzy set A in X as well as the 7T -intersection and
the S-union of L—fuzzy sets A and B in X are the L-fuzzy sets con (4), ANt B
and A Us B defined by

con (A)(z) = N (A(x))

ANt B(z) = T(A(z), B(z))

AUs B(z) = S(A(z), B(z))
for all z in X. The dual of a t-conorm S in L w.r.t. a negator N in L is a t-norm 7
in L defined as

T (@,y) = N(SWN(2),N (1))
An implicator in L is any L? — L-mapping Z satisfying Z(0z,0z) = 1z, Z(11,z) =
z, for all  in L. Moreover we require Z to be decreasing in its first, and increasing
in its second component. If S and N are respectively a t-conorm and a negator in
L, then it is well-known that the mapping Zs n defined by



Isn(x,y) = SN (2),y)

is an implicator in L, usually called S-implicator (induced by S and A). Note that
if N is involutive then

S(z,y) =Zs n(N(z),y)
for all x and y in L. For ease of notation we also use the concept of S—implicator
induced by a t-norm 7 and an involutive negator N’

Iy (z,y) = N(T (2, N(y)))

If S is the dual of T then Zs xr = Z7 . Furthermore, if 7 is a t-norm in L, the
mapping Z7 defined by

Zr(z,y) = sup{A|A € L and T (z,A) <1 y}

is an implicator in L, usually called the residual implicator (of 7). The partial
mappings of a t-norm 7 in L are sup-morphisms if

T (sup zi, y) =sup 7 (zs,y)
iel iel
for every family I of indexes. Every implicator induces a negator in the following
way
N(z) = Z(z,0)

for all z in L. The negator induced by an S—implicator Zs » coincides with A/. The
negator induced by the residual implicator Zr is denoted by N7.

It is easy to verify that the meet and the join operation on L are respectively
a t-norm and a t-conorm in L. We denote them by 7um and Swm respectively. Also
AN B is a shorter notation for ANy, B, while AU B corresponds to AUs,, B. The
[0,1] — [0, 1] mapping N, defined as

Ny(z)=1—x

for all z in [0, 1] is a negator on [0, 1], often called the standard negator. For a [0, 1]-
fuzzy set A, con,(A) is commonly denoted by co(A). Table 1 depicts the values of
well-known t-norms and t-conorms on [0, 1], for all  and y in [0, 1]. The first column

Table 1. Triangular norms and conorms on [0, 1]

t-norm t-conorm
Tw(z, y) = min(z, y) Swu(z,y) = max(z,y)
Tp(z,y)=x-y Sp(z,y)=z+y—z-y
Tw(z,y) = max(z + y — 1,0)|Sw(z,y) = min(z +y,1)

of Table 2 shows the values of the S-implicators in [0, 1] induced by the t-conorms
of Table 1 and the standard negator N,, while the second column lists the values of
the corresponding residual implicators.

An L-fuzzy relation R on X is called an L—fuzzy T-equivalence relation if for all z,
y, and z in X



Table 2. S-implicators and residual implicators on [0, 1]

S-implicator residual implicator
1,ifz <y
y, else

1, ifxe<y
Ipe)=1-stay | I ={y b

x?

Isy n,(x,y) =min(l —z + y,1) | Iry (z,y) =min(l —x + y,1)

Iswn.(@,y) =max(l—2,y) | Ing(e,y) = {

(E1) R(z,z) =1 (reflexivity)
(E2) R(z,y) = R(y, ) (symmetry)
(E3) T(R(=,y), R(y,2)) < R(x,2) (T-transitivity)

When L = {0,1}, L-fuzzy set theory coincides with traditional set theory, in this
context also called crisp set theory. {0, 1}-fuzzy sets and {0, 1}-fuzzy relations are
usually also called crisp sets and crisp relations. When L = [0, 1], fuzzy set theory
in the sense of Zadeh is recovered. [0,1]-fuzzy sets and [0, 1]-fuzzy relations are
commonly called fuzzy sets and fuzzy relations. Furthermore it is customary to
omit the indication “in [0,1]” when describing the logical operators, and hence to
talk about negators, triangular norms, etc.

2.2 Intuitionistic Fuzzy Sets

IFSs can also be considered as special instances of L—fuzzy sets [16]. Let (L*, <r«)
be the complete, bounded lattice defined by:

L* = {(z1,22) €[0,1)% | &1 + z2 < 1}
(z1,22) <z (y1,92) © 1 < y1 and z2 > Y2

The units of this lattice are denoted 0z = (0,1) and 1= = (1,0). For each element
x € L*, by 1 and z» we denote its first and second component, respectively. An IFS
A in a universe X is a mapping from X to L*. For every ¢ € X, the value pa(x) =
(A(z))1 is called the membership degree of z to A; the value va(z) = (A(x))2
is called the non—-membership degree of = to A; and the value m4(z) is called the
hesitation degree of z to A. Just like L*-fuzzy sets are called IFSs, L*-fuzzy relations
are called IF relations.

By complementing the membership degree with a non-membership degree that
expresses to what extent the element does not belong to the IFS, such that the
sum of the degrees does not exceed 1, a whole spectrum of knowledge not accessible
to fuzzy sets can be accessed. The applications of this simple idea are manyfold
indeed: it may be used to express positive as well as negative preferences; in a logical
context, with a proposition a degree of truth and one of falsity may be associated;
within databases, it can serve to evaluate the satisfaction as well as the violation of
relational constraints. More generally, IFSs address the fundamental two-sidedness
of knowledge, of positive versus negative information, and by not treating the two
sides as exactly complementary (like fuzzy sets do), a margin of hesitation is created.
This hesitation is quantified for each z in X by the number



ma(z) =1— pa(z) —va(z)

The terms IF negator, IF t-norm, IF t-conorm and IF implicator are used to
denote respectively a negator in L*, a t-norm in L*, a t-conorm in L* and an
implicator in L*. A t-norm 7 in L* (resp. t-conorm &) is called t-representable [16]
if there exists a t-norm 7 and a t-conorm S in [0,1] (resp. a t-conorm S’ and a
t-norm 7" in [0, 1]) such that, for z = (z1,22),y = (y1,¥2) € L*,

T (z,y) = (T(21,91), S(x2,92))
S(mvy) = (S’($1,y1),T,(.’E2,y2))

T and S (resp. S’ and T') are called the representants of 7 (resp. S).
Finally, denoting the first projection mapping on L* by pri, we recall from [16]
that the [0, 1] — [0, 1] mapping N defined by

N(a) =priN(a,1—a)

for all a in [0,1] is an involutive negator in [0,1], as soon as A is an involutive
negator in L*. N is called the negator induced by A. Furthermore

N(z1,22) = (N(1 - 22),1 — N(z1))

for all ¢ in L*.
The standard IF negator is defined by

Ns(x) = (x2,21)

for all z in L*. The meet and the join operators on L* are respectively the IF t-norm
Tu and the IF t-conorm Su defined by

Tu(z,y) = (min(z1,y1), max(z2, y2))

SM(x’ y) = (max(xla yl)’ min(xz, y2))
Combining Tw and Sw of Table 1 gives rise to the t-representable IF t-norm 7w
and IF t-conorm Sw defined by
Tw(z,y) = (max(0,z1 +y1 — 1), min(1, z2 + y2))

Sw(z,y) = (min(1, z1 + y1), max(0, x> + y2 — 1))

However also 71 and Sr are possible extensions of Tw and Sw to IFS theory
Tu(z,y) = (max(0,z1 +y1 — 1), min(l,z2 + 1 —y1,y> + 1 — 21))

Su(z,y) = (min(l,z1 + 1 — y2,y1 + 1 — 12), max(0,z2 + y2 — 1))
They are however not t-representable [16]. All of these IF t-conorms induce IF S-
implicators
Lsu,N. (2,y) = (max(z2, y1), min(z1,y2))
Lsw N, (#,y) = (min(1, €2 + y1), max(0, 21 + y2 — 1))
Is..Ns(z,y) = (min(l,y1 + 1 — 21,22 + 1 — y2), max(0,y2 + z1 — 1))

while the IF t-norms have residual IF implicators



1+ if 1 <y1 and x2 > Y2

_ ) A=y, ) ifz1 <y and z2 < yo
(@ y) = (y1,0) if £1 > y1 and 22 > v
(y1,92) if 1 > y1 and z2 < Y2

Irw(z,y) = (min(l, 1 +y1 — 21,1 + 22 — y2), max(0,y2 — x2))
Finally we note that Z7;, equals Zs, ..

3 IF Relational Images

Next to the composition of relations, the direct image of a set under a relation is a
basic operation in traditional relational calculus. Let R be a relation from X to X
and A a subset of X, then the direct image of A under R is defined by

RtA={y|ly € X and (Fz € X)(z € A and (z,y) € R)} (1)

The direct image of A contains all elements of X that are related to at least one
element of A. Furthermore the superdirect image of A under R

R|A ={y|ly € X and (Vz € X)((z,y) e R=>z € A)} (2)

contains all elements of X that are related only to elements of A. These images can
be generalized to the L—fuzzy relational case ([8, 21]). Since in our quest for a “divide
and conquer” approach we attempt to express IF relational images as constructs of
fuzzy relational images for membership and non-membership functions, we recall
the most general definition on the level of L-fuzzy relational calculus.

Definition 1 (L—fuzzy relational images). Let 7 and Z be a t-norm and an
implicator in L. Let A be an L—fuzzy set in X and R an L-fuzzy relation on X. The
direct and superdirect image of A under R are the L—fuzzy sets in X respectively
defined by

Rt7A(y) = sup T(A(z), R(z,y))

RizA(y) = inf Z(R(z,y), Az))
for ally in X.

R1A(y) is the height of the T—intersection of A and Ry, i.e. the degree to which A
and Ry overlap. R}, A(y) corresponds to a well-known measure of inclusion of Ry in
A. The main aim in this section is to provide properties of these L—fuzzy relational
images in general and of IF relational images in particular. In the following sections
we will go into the semantics of the concepts of IF relational direct and superdirect
images and their properties in the context of modelling linguistic hedges and IF
rough sets.

Proposition 1. [12] Let T and Z be a t-norm and an implicator in L. Let R be an
L—fuzzy relation on X. If R is reflexive then for every L—fuzzy set A in X

Rl;AC ACRY;A



Proposition 2. [12] Let T and I be a t-norm and an implicator in L. Let R be an
L-fuzzy relation on X. Let A and B be L—fuzzy sets in X. If A C B then

RI;ACR|;B
R1;AC R1,B

Proposition 3. [12] Let T and T be a t-norm and an implicator in L. Let A be an
L-fuzzy set in X. Let Ry and R be L—fuzzy relations on X. If Ry C Ry then

Ril;AD Rzl A
RiT+AC Rt /A

Proposition 4. [12] Let T and Zr be a t-norm and its residual implicator in L.
Let A be an L—fuzzy set in X and R a T —transitive L—fuzzy relation on X. If the
partial mappings of T are sup—morphisms then the following are equivalent

(1) A=Rl. A
(2) A= Rt-A

Proposition 5. [12] Let T and It be a t-norm and its residual implicator in L.
Let A be an L—fuzzy set in X and R a T —transitive L—fuzzy relation in X. If the
partial mappings of T are sup—morphisms then

Rtr(Rt7A) = Rt7A
RJ/IT (Riz—r A) = Ri«z—r A

Corollary 1. Let T and Z1 be a t-norm and its residual implicator on L. Let A
be an L—fuzzy set in X and R a T —transitive L—fuzzy relation on X. If the partial
mappings of T are sup—morphisms then

R (RJrIT A) = RJ'IT A
R~Lz7- (RTTA) = RTTA

We recall some results concerning the interaction of L—fuzzy relational images with
union, intersection, and complementation of L—fuzzy sets.

Proposition 6. [12] Let T and Z7 be a t-norm and its residual implicator in L.
Let A and B be L—fuzzy sets in X and R an L—fuzzy relation on X. If the partial
mappings of T are sup—morphisms then

R1,(AUB) = Rt;AUR?t,B
Rl; (ANB)=Rl; ANR|; B

Proposition 7. [12] Let T and Z7 be a t-norm and its residual implicator in L.
Let R be an L—fuzzy relation on X. For every L—fuzzy set A in X

cowy (R 17 A) C Riz, (cony A) 3)
If the partial mappings of T are sup—morphisms then
Rt7(cons A) € cony (Rlz A) (4)

If N7 is involutive then the left and right hand sides in (3) and (4) are equal.



Proposition 8. [12] Let T and N be a t-norm and an involutive negator in L, and
let Tr n be the corresponding S—implicator. Let R be an L—fuzzy relation on X. For
every L—fuzzy set A in X

cony (R17 A) C Rlz, y(con A)
Rt7(conA) C coN'(RizT,NA)

An IFS A is characterized by means of a membership function g4 and a non-
membership function v4. A natural question which arises is whether the direct
image and the superdirect image of A could be defined in terms of the direct and
the superdirect image of pa and va, (all under the proper L—fuzzy relations of
course). Generally such a “divide and conquer” approach is everything but trivial in
IF'S theory, and sometimes even impossible. However some conditions implied on the
logical operators involved can allow for some results in this direction. Particularly
attractive are the t-representable t-norms and t-conorms, and the S-implicators that
can be associated with them.

Proposition 9. Let T be a t-representable IF t-norm such that T = (T,S), let N
be an involutive negator in [0,1], and let Is N be the S-implicator in [0,1] induced
by S and N. Let R be an IF relation on X. For every IFS A in X

Rt7A = (prtppa, (con (V) iy (va) (5)
Proof. For all y in X we obtain successively
Rt A(y) = sup T (R(z,y), A(z))
= sup (T'(pr(z,y),pa(z)), S(vr(z,y),va(z)))

zeX

= (500 Tur(e. ), na(@), jnf, Ton (N wa(a, ) vaa) )
zeX TE

= ((urtrsa) ), (con ()i yv4)®))

Proposition 10. Let S be a t-representable IF t-conorm such that S = (S,T), let
N be an involutive IF negator, let Zs x be the IF S—implicator induced by S and N,
let N be the negator in [0,1] induced by N and let Is,n be the S-implicator induced
by S and N. Let R be an IF relation on X. For every IFS A in X

Rz, A= ((co vm)sg s colconpm)trva) (©)

Proof. For all y in X we obtain successively



Rlzg AW) = inf Is v (R(z,y), A(e))

inf SV (R(z,1)), A(2))
(Iig)f( S(N(1 = vr(,y)), pa(x)),

sup T(1 — N(un(z, 1)), m(x)))
z€X

= (aﬂig)f( Is n(co(vr)(z,y), pa(z)),

sup T(co(conR))(m,y»,uA(z)))
— ((cowm) by 1) (0), (colcon (ur) ) 1)

Observe that in both (5) and (6) on the “fuzzy level” the images are taken under the
membership function pr, or something semantically very much related, such as the
N-complement of the non-membership function vr or once even the standard com-
plement of the N-complement of ur. Presented in this way, the resulting formulas
look quite complicated. For better understanding, let N be the standard negator,
and let the IF relation R be a fuzzy relation, i.e. ur = co(vr), then formulas (5)
and (6) reduce to
Rt A= (urtopa, prisg yva)

RiIS,NA = (HRlIS,NHAaHRTTVA)
Apparently in this case the membership function of the direct image of A is the
direct image of the membership function of A, while the non-membership function
of the direct image of A is the superdirect image of the non-membership function of
A. For the superdirect image of A the dual proposition holds.
Finally let us recall a proposition that helps to construct non trivial 7—transitive
IF relations (i.e. pr not necessarily equal to co(vgr)).

Proposition 11. [6] Let T be a t-representable IF t-norm such that T = (T, S) and
such that S(xz,y) =1 —T(1 —z,1 —y), and let R1, R> be two fuzzy T —equivalence
relations such that Ri(z,y) < Ra(x,y), for all x and y in X. Then R defined by,
for x and y in X,

R(Z‘,y) = (Rl(wa y): 1- RQ(“"’ y))

is an IF T —equivalence relation.

Ezample 1. Let X = [0, 100], and let the fuzzy Tw-equivalence relation E. on X be
defined by

E.(z,y) = max (1 - @,0)

for all z and y in X, and with real parameter ¢ > 0. Obviously, if ¢; < ¢z then
E. (z,y) < Ec,(z,y). By proposition 11, (E.,,co(E.,)) is an IF Ty-equivalence
relation.



4 Representation of Linguistic Hedges

Since its introduction in the 1960’s, fuzzy set theory [34] has rapidly acquired an
immense popularity as a formalism for the representation of vague linguistic infor-
mation. Over the years many researchers have studied the automatic computation
of membership functions for modified linguistic terms (such as very cool) from those
of atomic ones (such as cool). Whether we are working with fuzzy sets, IFSs or
L—fuzzy sets in general, establishing a concrete mathematical model for a given lin-
guistic expression is typically one of the most difficult tasks when developing an
application. Therefore it is very useful to have standard representations of linguistic
modifiers such as very and more or less at hand, since they allow for the automatic
construction of representations for the modified terms from representations of the
original terms.

The first proposal in this direction was made by Zadeh [33] who suggested to
transform the membership function of a fuzzy set A in X into membership functions
for very A and more or less A in the following way

very A(y) = A(y)*
more or less A(y) = A(y)2

for all y in X. One can easily verify that the following natural condition, called
semantical entailment, [24] is respected:

very A C A C more or less A

These representations have the significant shortcoming of keeping the kernel and the
support, which are defined as

ker A = {yly € X A A(y) =1}
supp A = {yly € X A A(y) > 0}

As a consequence they do not make any distinction between e.g. being old to degree
1 and being very old to degree 1, while intuition might dictate to call a woman of 85
old to degree 1 but very old only to a lower degree. Many representations developed
in the same period are afflicted with these and other disadvantages on the level of
intuition as well as on the level of applicability (we refer to [22] for an overview),
in our opinion due to the fact that these operators are only technical tools, lacking
inherent meaning. In fact it wasn’t until the second half of the 1990’s that new
models with a clear semantics started to surface, such as the horizon approach [27]
and the context (or fuzzy relational) based approach [10, 15]. The latter can be
elegantly generalized to L—fuzzy sets [13] which accounts for its strength.

A characteristic of the “traditional” approaches is that they do not really look at
the context: when computing the degree to which y is very A, Zadeh’s representation
for instance only looks at the degree to which y is A. It completely ignores all the
other objects of the universe and their degree of belonging to A. In the context
based approach the objects in the context of y are taken into account as well. This
context is defined as the set of objects that are related to y by some relation R that
models approximate equality. Specifically it is the R-foreset of y.

One could say that somebody is more or less adult “if he resembles an adult”.
Likewise a park is more or less large “if it resembles a large park”. In general: v is more



or less A if y resembles an z that is A. Hence y is more or less A if the intersection
of A and Ry is not empty. Or to state it more fuzzy—set—theoretically: y is more or
less A to the degree to which Ry and A overlap, i.e.

more or less A(y) = Rt A(y)

For the representation of very an analogous scheme can be used. Indeed: if all men
resembling Alberik in height are tall, then Alberik must be very tall. Likewise Krista
is very kind “if everyone resembling Krista is kind”. In general: y is very A if all
z resembling y are A. Hence y is very A if Ry is included in A. To state it more
fuzzy—set—theoretically: y is very A to the degree to which Ry is included in A, i.e.

very A(y) = R lz A(y)

Under the natural assumption that R is reflexive (every object is approximately
equal to itself to the highest degree), semantical entailment holds (Proposition 1).
As mentioned in the introduction, since IFSs are also L-fuzzy sets, a representation
for more or less and very is readily obtained.

Ezample 2. Figure 1 depicts the membership function g4 and non-membership func-
tion v4 of an IFS A in R. A is modified by taking the direct image by means of

Fig. 1. Membership and non-membership functions of A and RtA

Tw under an IF relation R with a membership function based on the general shape
S-membership function

0, z<Ll o
N2
S(@07) = T2, a<z<(at9)/2
= N2
o 1- 20 (a+y)/2<z<y
1, Yz

for z, @ and 4 in R and a < 4. Specifically R is defined as

S(z;y — 20,y — 5) ifz<y-—5
pr(z,y) =<1 ify—56<xz<y+5
1—-S(zy+5,y+20)if y+5<=z



and vr(z,y) = 1 — pr(z,y), for all x and y in R. This results in the membership
and the non-membership function for the modified IFS Rt A also depicted in Figure
1. As Figure 2 illustrates, the modification does not preserve the local hesitation:
depending on its context, the hesitation degree of y in A increases, decreases or
remains unaltered when passing to RTA. On the global level however, the overall

Fig. 2. Hesitation

hesitation seems to be invariant, but this is not in general the case. Let us assume
that the conditions of Proposition 9 are fulfilled. Under the natural assumption that
R is reflexive, we have

(con(vr)) dz va Cva
and

pa C prtrpa

If v4 is the constant [0,1] — {0} mapping, modification of the non—-membership
function will have no effect. Any change in the membership function will therefore
give rise to a decrease of the overall hesitation. Note that this seems natural: the
hesitation to call objects A might be greater than the hesitation to call them more
or less A.

As far as the authors are aware, the only other existing approach to the modifi-
cation of linguistic terms modeled by IFSs is due to De, Biswas and Roy [7]. They
proposed an extension of Zadeh’s representation; it is based on the so—called product
AN, B of IFSs A and B. One can easily verify that

A%(w) = (pa(u), 1~ (1~ va(u))®) (7)

in which A2 is used as a shorthand notation for ANy, A. Furthermore for A? defined
in a similar manner as

A% (u) = (pa(u)?,1— (1 —va(u))?) ®)

one can verify that A% N7 A% = A which justifies the notation. Entirely in the line of
Zadeh’s work, in [7] the authors propose to use A% and A? for the representation of



more or less and very respectively. As a consequence, the drawbacks listed in Section
4 are also inherited, making the approach less interesting from the semantical point
of view.

Nevertheless Equations (7) and (8) reveal some interesting semantical clues.
Indeed, these formulas actually suggest to model very A by

(very pa, not (very not v4))
and more or less A by
(more or less pa, not (more or less not v4))

As such it is an example of what we have called the divide-and—conquer approach.
The resulting expressions for the non—-membership functions are clearly more com-
plicated than those for the membership functions; they stem from the observation
that the complement of the non—-membership function can be interpreted loosely as
a kind of second membership function.

As Proposition 9 indicates, taking the IF direct image (“more or less”) involves
both a fuzzy direct image (“more or less”) and a fuzzy superdirect image (“very”). A
dual observation can be made for Proposition 10. Interestingly enough, De, Biswas
and Roy [7] do not use both hedges at the same time, but their approach involves
negation of the non-membership function. Possible connections between intensifying
hedges (like very) and weakening hedges (such as more or less) by means of negation
have already intrigued several researchers. In [2] the meaning of “not overly bright” is
described as “rather underly bright” which gives rise (albeit simplified) to the demand
for equality of the mathematical representations for not very A and more or less not
A. Propositions 7, 8, 9, and 10 show that under certain conditions on the connectives
involved, the IF relational model indeed behaves in this way.

5 IF Rough Sets

Pawlak [28] launched rough set theory as a framework for the construction of ap-
proximations of concepts when only incomplete information is available. Since its
introduction it has become a popular tool for knowledge discovery (see e.g. [23] for a
recent overview of the theory and its applications). As a new trend in the attempts
to combine the best of several worlds, very recently all kinds of suggestions for ap-
proaches merging rough set theory and IFS theory start to pop up [3, 20, 30, 31].
In the literature there exist many views on the notion “rough set” which can be
grouped into two main streams. Several suggested options for fuzzification have led
to an even greater number of views on the notion “fuzzy rough set”. Typically,
under the same formal umbrella, they can be further generalized to the notion “L-—
fuzzy rough set”. Needless to say that, when trying to compare and/or to combine
rough set theory, fuzzy set theory and IF'S theory, one finds oneself at a complicated
crossroads with an abundance of possible ways to proceed. The proposals referred to
above all suffer from various drawbacks making them less eligible for applications. In
[6] we made the definition of fuzzy rough set by Radzikowska and Kerre [29] — which



exists already in a more specific form for more than a decade — undergo the natural
transformation process towards intuitionistic fuzzy rough set theory (IFRS theory
for short), which lead to a mathematically elegant and semantically interpretable
concept.

Definition 2 (IF rough set). Let 7 and Z be an IF t-norm and an IF implicator
respectively. Let R be an IF T —equivalence relation on X. We say that a couple of
IFSs (A1, A2) is called an intuitionistic fuzzy rough set (IFRS) in the approzimation
space (X, R, T,Z) if there exists an IFS A such that R|;A = A1 and Rt A = As.
R} ;A and R ;A are called the lower and upper approzimation of A respectively.

Proposition 1 ensures that the lower approximation of A is included in A, while A
is included in its upper approximation. Propositions 2 and 3 describe how the lower
and upper approximations behave w.r.t. a refinement of the IF'S to be approximated,
or a refinement of the IF relation that defines the approximation space.

Definition 3. [6] A is called definable in (X, R, T,Z) iff Rl;A= Rt;A

In classical rough set theory, a set is definable if and only if it is a union of equivalence
classes. This property no longer holds in IFRS theory. However, if we imply sufficient
conditions on the IF t-norm 7 and the IF implicator Z defining the approximation
space, we can still establish a weakened theorem, relying on Propositions 4 and 5.

Theorem 1. [6] Let T and Z7 be an IF t-norm and its residual implicator. If the
partial mappings of T are sup-morphisms then any union of R-foresets is definable,
i.e.

(3B) (B CXand A= [ Rz) implies R}, A = Rf;A

z€B

Under the same conditions implied on 7 and Z as in Theorem 1, the Sy-union and
Tu-intersection of two definable IF'Ss is definable. This is a corollary of Proposition
6. Finally, the following examples illustrate the concept of an IFRS computed in
approximation spaces involving t-representable as well as non t-representable IF
t—norms.

Ezample 3. Figure 3 shows the membership function g4 and the non-membership
function v4 of the IFS A in the universe X = [0, 100]. Using the non-t-representable
IF t-norm 7Ty, its residual IF implicator Z7;, and the IF relation R defined by

R(.’L‘,y) = (E4()(:l7,y), 1- E40(.’E, y))

for all z and y in [0, 100] (see Example 1 for the definition of E4) we computed the
lower approximation of A (= A1) as well as the upper approximation of A (= A»).
They are both depicted as well in Figure 3.

Ezample 4. Figure 4 shows the same IFS A we used in Example 3. However to
compute its lower approximation A; and its upper approximation As, this time we
used the t-representable IF t-norm Tw, its residual IF implicator and the IF relation
R defined by

R(z,y) = (Eso(@,y), Eso(,y))
for all z and y in [0, 100].



Fig. 3. A (solid lines); upper approximation of A (dashed lines); lower approxima-
tion of A (dotted lines)
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6 Conclusion

Partly due to existing studies on connectives in the lattice L*, the direct and superdi-
rect relational images are readily obtained in an intuitionistic fuzzy setting. Under
certain conditions on the connectives used in the formulas of direct and superdirect
image, a meaningful representation for the image of the whole in terms of that of its
constituting parts is established. This is not only interesting from the computational
point of view, but, using the images to represent linguistic hedges, also helps us to
gain more insight in the semantics of the linguistic modification process. Further-
more the IF relational images lead to a mathematically elegant concept of an IF
rough set, where they are used to construct upper and lower approximations.
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