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Abstract. While traditional algorithms concern positive associations
between binary or quantitative attributes of databases, this paper fo-
cuses on mining both positive and negative fuzzy association rules. We
show how, by a deliberate choice of fuzzy logic connectives, significantly
increased expressivity is available at little extra cost. In particular, rule
quality measures for negative rules can be computed without additional
scans of the database.
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1 Introduction and Motivation

Association rules [1], which provide a means of presenting dependency relations
between attributes in databases, have become one of the most important fields
in knowledge discovery. An association rule has the form X ⇒ Y , where X and
Y are two separate sets of attributes (itemsets). An example of an association
rule is {mobile, batteries} ⇒ {phone card}, which means that a customer who
buys a mobile and batteries is likely to buy a phone card as well.

Since the attributes of real applications are not restricted to binary values
but also quantitative ones like age and income exist, mining quantitative asso-
ciation rules is regarded meaningful and important. A straightforward approach
to this problem is to partition attribute domains into intervals and to transform
the quantitative values into binary ones, in order to apply the classical mining
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algorithm [9]. To avoid abrupt transitions between intervals, vagueness has been
widely introduced into the model of quantitative association rule mining because
of its flexibility w.r.t. knowledge representation (see e.g. [3–7]). Indeed, a quan-
titative rule like “If the customers are between the ages of [30, 60], then they
tend to buy electronics at a price of [$1000, $5000]”, may lead to the so-called
“boundary problem” [7]; e.g. a customer aged 29 with a purchase of $4000 is not
accounted for in the model. On the other hand, “Middle-aged customers tend
to buy expensive electronics” may be more flexible and would reflect this cus-
tomer’s buying behaviour. To deal with the sharp boundary problem, a number
of fuzzy sets can be defined on the domain of each quantitative attribute, and
the original dataset is transformed into an extended one with attribute values
in the interval [0, 1].

On another count, classical algorithms merely concern positive association
rules, that is, only those itemsets appearing frequently together will be dis-
covered. However, a negative rule such as {¬ high income } ⇒ {¬ expensive
electronics} is also useful because it expresses that people who are not rich
generally do not buy expensive electronics. Although this kind of knowledge
has been noted by several authors [2, 5, 10], we believe that the research on
negative association rules has not received sufficient attention for the following
reason: association rule mining first emerged in the domain of supermarkets,
whose databases always contain thousands of goods (attributes) but each cus-
tomer only buys few of them. In other words, most of the attribute values in
a transaction are 0. If negative associations are also considered, a great deal
of frequent negative patterns are generated, making algorithms unscalable and
positive rules less noticed. In quantitative databases this problem is much less
significant, because the fraction of attribute values equal to 0 is usually much
smaller.

In this paper, in Section 2 we introduce positive and negative quantitative
association rules in the classical (crisp) case. We show that, for the computation
of the traditional rule quality measures of support and confidence, as well as the
more logic–inspired degree of implication, the use of negative association rules
does lead to additional database scans. Section 3 investigates the extension to a
fuzzy framework, while Section 4 discusses important issues to be considered in
a realistic application.

2 Positive and Negative Association Rules

Let D = {t1, t2, . . . , tn} be a relational database of n tuples (or transactions)
with a set of binary attributes (or items) I = {I1, I2, . . . , Im}; each transaction t
in D can be considered as a subset of I, t[Ij ] = 1 if Ij ∈ t, and t[Ij ] = 0 if Ij �∈ t
(j = 1, 2, . . . , m). An association rule is of the form: X ⇒ Y , where X and Y are
two disjoint non–empty subsets of I (itemsets). Support and confidence for rule
X ⇒ Y are defined as supp(X ⇒ Y ) = |DX∪Y |

|D| and conf(X ⇒ Y ) = |DX∪Y |
|DX |

respectively, where |D| is the number of tuples in D, |DX | is the number of
tuples in D that contain X and (hence) |DX∪Y | is the number of tuples in
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D that contain both X and Y . Also, we define the support of itemset X as
supp(X) = |DX |

|D| ; clearly supp(X ⇒ Y ) = supp(X ∪ Y ). A valid association rule
is a rule with support and confidence greater than given thresholds. [1]

When a database also contains a quantitative attribute Q, it is possible to
“binarize” Q by partitioning its range into p intervals and by replacing Q by new
binary attributes Q1, . . . Qp such that t[Qk] = 1 when the value of t for Q falls
within the kth interval, and 0 otherwise. We can then apply traditional mining
algorithms to this transformed dataset [9]; these algorithms usually involve de-
tecting all the frequent itemsets1, and using them to construct valid association
rules (e.g. Apriori algorithm [8]).

In [5, 6], authors distinguish between positive, negative and irrelevant exam-
ples of an association rule. A transaction t is called a positive example of X ⇒ Y ,
if X ⊆ t and Y ⊆ t, a negative example if X ⊆ t and Y �⊆ t and an irrelevant
example if X �⊆ t. It is clear that with this terminology, the support of X ⇒ Y
equals the relative fraction of database transactions that are positive examples
to the rule. In [10], expressions of the form X ⇒ Y , X ⇒ ¬Y , Y ⇒ ¬X
and ¬Y ⇒ ¬X, where X and Y are itemsets, are introduced and called neg-
ative association rules. The understanding is that, e.g., each negative example
of X ⇒ Y is a positive example of X ⇒ ¬Y . However, this definition has an
important drawback: a negative association rule {mobile} ⇒ ¬ {batteries, alarm
clock} then means that customers who buy a mobile are unlikely to buy both
batteries and alarm clocks. If a transaction t contains mobile and batteries, but
no alarm clock, t is then a positive example to the rule because {mobile} ⊆ t
and {batteries,alarm clock} �⊆ t. More generally, if Y ⊆ Y ′, then the support of
X ⇒ ¬Y ′ is not less than that of X ⇒ ¬Y , which (informally) means that for
two rules with the same antecedent, the negative rule with longer consequent
has larger support. This results in much more computations and uninteresting
negative rules with long consequents.

In real life, a more desirable kind of knowledge may be {mobile} ⇒ {¬
alarm clock, batteries}, which means that customers buying mobiles are unlikely
to buy alarm clocks but are likely to buy batteries. Therefore, we regard each
item’s complement as a new item in the database. That is, for the rule X ⇒ Y ,
X and Y are two disjoint itemsets of I ∪ Ic, where I = {I1, I2, . . . , Im} and
Ic = {¬I1, ¬I2, . . . ,¬Im}.

As rule quality measures, we complement2 support and confidence with a
so–called degree of implication (see e.g. [3, 5]). The latter measure interprets the
arrow sign in X ⇒ Y as an implication relationship, and is defined as

Dimp(X ⇒ Y ) =
|DX→Y |

|D| (1)

1 i.e., those meeting the support threshold.
2 In [5] it was shown that under certain circumstances degree of implication may even

replace confidence, but in principle the three measures can meaningfully co–exist.
Degree of implication may be particularly relevant when considering incorporation
of the mined association rules into a rule–based system (see e.g. [4]).
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where DX→Y = {t ∈ D|X �⊆ t or Y ⊆ t}. Clearly, this non–symmetrical measure
computes the relative fraction of transactions that are not negative examples to
the rule. A detailed investigation into this measure and its relationship to support
and confidence was carried out in [5].

Because of the large size of the databases in real life applications, computa-
tions that require database scanning are by far the most time–consuming. It is
therefore worthwhile to avoid them as much as possible. The following proper-
ties show that mining negative assocations, as well as using Dimp, do not require
additional database scans.

Proposition 1. No transaction simultaneously contains Ij and ¬Ij.

During candidate frequent itemset generation, any itemset containing both
an item and its complement can be pruned away immediately.

Proposition 2. supp(X ⇒ {Ik}) + supp(X ⇒ {¬Ik}) = supp(X).

Proposition 2 relates the support of a negative association rule to that of a
corresponding positive rule. More generally, the following holds.

Proposition 3. Let X = {J1, . . . , Jp, ¬J ′
1, . . . ,¬J ′

q} where Jk, J ′
l ∈ I and X ′ =

{J1, . . . , Jp}. Then supp(X) equals to

|DX′ | −
q∑

i=1
|DX′∪{J′

i
}| +

q∑

i=1

q∑

j=i+1
|DX′∪{J′

i
,J ′

j
}| + . . . + (−1)q|DX′∪{J′

1,...,J ′
q}|

|D|
Degree of implication can be derived from support, i.e. computing Dimp does

not lead to additional database scans.

Proposition 4. [3] Dimp(X ⇒ Y ) = 1 − supp(X) + supp(X ∪ Y )

Finally, proposition 5 gives us a hint about how to choose meaningful thresh-
old values in the definition of a valid association rule.

Proposition 5. supp(X ⇒ Y ) ≤ conf(X ⇒ Y ) ≤ Dimp(X ⇒ Y )

3 Positive and Negative Fuzzy Association Rules

In the framework of fuzzy association rules, transactions can be perceived as
fuzzy sets in I, so t[Ij ] ∈ [0, 1]; moreover, we assume t[¬Ij ] = 1 − t[Ij ]. The idea
is that a transaction can contain an item to a given extent. A standard approach
to extend quality measures to fuzzy association rules is to replace set-theoretical
operations by corresponding fuzzy set–theoretical operations. Specifically, we
need extensions to the classical conjunction and implication. To this end, t-
norms and implicators are used; some popular t-norms and implicators are listed
in Table 1.
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Table 1. Well-known t–norms and implicators (x, y in [0, 1])

t-norm implicator
TM(x, y) = min(x, y)
TP(x, y) = xy
TW(x, y) = max(x + y − 1, 0)

IM(x, y) = max(1 − x, y)
IP(x, y) = 1 − x + xy
IW(x, y) = min(1 − x + y, 1)

Support. Given a t-norm T , the degree to which a transaction t supports the
itemset X = {x1, . . . , xp} is expressed by:

DX(t) = T (t[x1], t[x2], . . . , t[xp]) (2)

Support is defined, by means of the cardinality of a fuzzy set, as:

supp(X ⇒ Y ) =

∑

t∈D

DX∪Y (t)

|D| =

∑

t∈D

T (DX(t), DY (t))

|D| (3)

Confidence.

conf(X ⇒ Y ) =

∑

t∈D

DX∪Y (t)
∑

t∈D

DX(t)
(4)

Degree of Implication.

Dimp(X ⇒ Y ) =

∑

t∈D

DX→Y (t)

|D| =

∑

t∈D

I(DX(t), DY (t))

|D| (5)

where I is an implicator. For a comparative study of the behaviour of various
implicators w.r.t. fuzzy association rule mining we refer to [5].

Since ordinary sets are replaced by fuzzy sets, the properties mentioned in
Section 2 need to be re–investigated. Proposition 1 does not generally remain
valid because T (x, 1 − x) = 0 does not hold for every t-norm (it does hold for
T = TW ), which means that item Ij and ¬Ij can appear in an itemset simultane-
ously. To avoid meaningless rules like {Ij} ⇒ {¬Ij}, we should explicitly include
this restriction in the definition of a valid fuzzy association rule X ⇒ Y . For
Proposition 2 to hold,

∑

t∈D

DX∪{Ik}(t) +
∑

t∈D

DX∪{¬Ik}(t) =
∑

t∈D

DX(t) should

hold. As was discussed in [6], for T = TP the proposition is valid. It can be veri-
fied that Proposition 3 is also valid for T = TP , hence the optimization strategy
to reduce the number of candidate itemsets can still be used. As discussed in [3],
Proposition 4 is maintained for some t-norm/implicator combinations, in partic-
ular for (TM , IW ), (TP , IP ) and (TW , IM ). Finally, Proposition 5 is valid as soon
as Proposition 4 is valid.
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4 Implementation and Discussion

To implement the fuzzy association rule mining procedure, we used a modified
version of the Apriori algorithm. To guarantee that all simplifying properties
from the previous section are valid, we chose T = TP and I = IP . Note that
these properties assure that the additional complexity caused by considering
negative items and degree of implication, can be kept within very reasonable
bounds, and the algorithm is definitely much more economical than straightfor-
wardly applying Apriori, treating negative items as new database attributes. It is
also very much preferable to the approach for mining negative association rules
from [10] which involves the costly generation of infrequent as well as frequent
itemsets.

Regarding the quality of the mined association rules, we observed that most
of them are negative. This can be explained as follows: when for each transaction
t and each collection J1, . . . , Jp of [0, 1]–valued positive attributes corresponding

to a quantitative attribute Q, it holds that3
p∑

i=1
t[Ji] = 1, then at the same time

p∑

i=1
t[¬Ji] = p − 1. In other words, the overall support associated with positive

items will be 1, while that associated with negative items will be p − 1, which
accounts for the dominance of the latter. Since typically p is between 3 and 5, the
problem however manifests itself on a much smaller scale than in supermarket
databases. To tackle it, we can e.g. use different thresholds for positive rules, and
for rules that contain at least one negative item. However, this second threshold
apparently should differ for every quantitative attribute since it depends on the
number of fuzzy sets used in the partition. A more robust, and only slightly
more time-consuming, approach is to impose additional filtering conditions and
interestingness measures to prune away the least valuable negative patterns.

5 Conclusion

We introduced fuzzy negative association rules, and showed that their incorpo-
ration into mining algorithms does not cause additional database scans, making
implementations efficient. Future work will focus on selecting adequate quality
measures to dismiss uninteresting negative rules.
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