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Abstract

Classical fuzzy mathematical morphology is one of the extensions of original

binary morphology to greyscale morphology. Recently, this theory was fur-

ther extended to interval-valued fuzzy mathematical morphology by allowing

uncertainty in the grey values of the image and the structuring element. In

this paper, we investigate the construction of increasing interval-valued fuzzy

operators from their binary counterparts and work this out in more detail for

the morphological operators, which results in a nice theoretical link between

binary and interval-valued fuzzy mathematical morphology. The investiga-

tion is done both in the general continuous and the practical discrete case.

It will be seen that the characterization of the supremum in the discrete case

leads to stronger relationships than in the continuous case.
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fuzzy sets, α-cuts

1. Introduction

The image processing domain consists of numerous theories to extract

information (edges, patterns, . . . ) from images. Mathematical morphology

is among these theories. In this theory [3, 1, 2], images are elements of a

complete lattice (L,C) with L the space and C the comparison operator.

Morphological operators have certain properties with respect to the com-

parison operator. For instance, dilations commute with supremum. Many

morphological operators transform images with the help of subsets called

structuring elements. Originally, only binary (black and white) images and

structuring elements were considered. Next, binary morphology [4], was ex-

tended to greyscale images in three different ways. In the threshold approach

[4], the structuring element still had to be binary, while in the umbra ap-

proach [5], also greyscale structuring elements were allowed. A third ap-

proach, fuzzy mathematical morphology [6], was introduced some time later

and was inspired by the observation that both greyscale images and fuzzy

sets are modelled as mappings from a universe U into the unit interval [0, 1].

Fuzzy set theory is thus used as a tool here and not to model uncertainty.

Besides the extensions from greyscale morphology to multivalued morphol-

ogy (e.g. [7, 8]), recently, greyscale fuzzy mathematical morphology was also

further extended based on extensions of fuzzy sets to be able to deal with un-

certain and bipolar information [9, 10, 11, 12, 13]. The interval-valued fuzzy

extension introduced in [12, 13], on which we concentrate in this paper, now

has the important feature that it is no longer only used as a tool, but also as
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a model to represent uncertainty regarding the measured grey levels. In this

model, a pixel in the image domain is no longer mapped onto one specific

grey value (∈ [0, 1]), but onto an interval of grey values to which the uncer-

tain grey value is expected to belong. For a discussion on the interval-valued

image model, we refer to [12, 19].

As a side note, we mention here that interval-valued fuzzy set theory and

intuitionistic fuzzy set theory [14] are equivalent [15] and as a consequence

also interval-valued and intuitionistic fuzzy mathematical morphology. So

the results in this paper can be translated to the intuitionistic/bipolar model

[9, 10] straightforwardly.

Finally, we remark that interval-valued representations also occur in a

natural way in other image processing subdomains. Examples can be found

in inverse halftoning [16], in the context of wavelets [17] and in edge detection

applications [18]. In the latter example, the interval-valued representation is

however rather a tool than a model.

In our previous work [19], we already studied the decomposition of the

interval-valued fuzzy morphological operators into their cuts. More precisely,

we investigated the relationships between the cuts of an interval-valued fuzzy

morphological operator and the corresponding binary operator applied on the

cuts of the image and structuring element. In this paper, we tackle the re-

verse problem, i.e., the construction of interval-valued fuzzy morphological

operators from the binary operators. We start from a more general perspec-

tive, in which we investigate the construction of increasing interval-valued

fuzzy operators from binary ones and additionally apply the construction

principle on the binary dilation that is increasing w.r.t. to both the image
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and structuring element.

This is first of all interesting from a theoretical point of view since it

provides us a link between binary and interval-valued fuzzy mathematical

morphology. It allows us to compute the interval-valued operators by com-

bining the results of several binary operators and also to approximate them

by a finite number of binary operators. We perform this investigation both

in the general continuous framework and the practical discrete framework.

In practice, image domains and allowed grey values have namely been sam-

pled down due to technical limitations. As will be shown, some stronger

relationships hold in this discrete case.

The paper is organized as follows. We repeat the basic principles of

interval-valued fuzzy mathematical morphology in section 2. Section 3 then

studies the construction of the interval-valued fuzzy morphological operators

based on weak and strict [α1, α2]-cuts in a continuous framework. Section 4

deals with the construction in a discrete framework, which leads to slightly

different results. Section 5 concludes the paper.

2. Interval-Valued Fuzzy Mathematical Morphology

An interval-valued fuzzy set [20] is an extension of a classical fuzzy set

[21]. Whereas a fuzzy set F in a universe U maps every element u ∈ U

onto its membership degree F (u) ∈ [0, 1] in the set F , an interval-valued

fuzzy set G in the universe U maps every u ∈ U onto a closed subinterval

G(u) = [G1(u), G2(u)] of [0, 1], in this way allowing uncertainty about the

membership degree. An interval-valued fuzzy set in a universe U is thus

modelled as an U -LI mapping, with LI = {[x1, x2] | [x1, x2] ⊆ [0, 1]}. The
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lower and upper bound of an element x of LI will be denoted by x1 and x2

respectively: x = [x1, x2] (Fig 1). We will further use the notation IVFS(U)

for the class of interval-valued fuzzy sets over the universe U .

x

[1,1][0,1]

[0,0] X1

X2

Figure 1: Graphical representation of LI .

In [15] it is shown that for the partial ordering ≤LI on LI given by

x ≤LI y ⇔ x1 ≤ y1 and x2 ≤ y2, ∀x, y ∈ LI ,

the structure (LI ,≤LI ) forms a complete lattice (which is a necessary and suf-

ficient condition to do morphology on LI). The infimum and supremum of an

arbitrary subset S of LI are then respectively given by inf S = [inf
x∈S

x1, inf
x∈S

x2]

and supS = [sup
x∈S

x1, sup
x∈S

x2]. For inf LI = [0, 0] and supLI = [1, 1] we

will use the notations 0LI and 1LI respectively. Further, the union of an

arbitrary family (Aj)j∈J of interval-valued fuzzy sets on U is defined by

(
⋃
j∈J

Aj)(u) = sup
j∈J

Aj(u),∀u ∈ U .

Other related orderings on LI that will occur in the remainder of the
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paper are (∀x, y ∈ LI):

x <LI y ⇔ x ≤LI y and x 6= y,

x≪LI y ⇔ x1 < y1 and x2 < y2,

x ≥LI y ⇔ y ≤LI x,

x >LI y ⇔ y <LI x,

x≫LI y ⇔ y ≪LI x.

Remark that a partial ordering on LI also induces a partial ordering on

IVFS(U).

Since we investigate the construction of the interval-valued fuzzy dilation,

erosion, opening and closing from the corresponding binary operators, we first

review the definition of the basic binary morphological operators.

Definition 1. [4] Let A,B ⊆ Rn. The binary dilation D(A,B), the binary

erosion E(A,B), the binary closing C(A,B) and the binary opening O(A,B)

are the sets given by:

D(A,B) = {y | Ty(−B) ∩ A 6= ∅},

E(A,B) = {y | Ty(B) ⊆ A},

C(A,B) = E(D(A,B), B),

O(A,B) = D(E(A,B), B),

with Ty(B) = {x ∈ Rn | x− y ∈ B} and −B = {−b | b ∈ B}.

As can be seen, the intersection and inclusion of two sets plays an im-

portant role in the definition of the morphological operators. Therefore, the

underlying Boolean conjunction (∧ : and)(an element belongs to the first
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and to the second set) and Boolean implication (⇒: implies)(if an element

belongs to the first set, then it also belongs to the second set) need to be ex-

tended to the interval-valued case if we want to introduce the interval-valued

fuzzy morphological operators. Also an extension of the Boolean negation

(¬ : not) will be needed in the paper.

Definition 2. [22] A negator N on LI is a decreasing LI −LI mapping that

coincides with the Boolean negation on {0, 1} (N (0LI ) = 1LI and N (1LI ) =

0LI ). It is called an involutive negator on LI if (∀x ∈ LI)(N (N (x)) = x).

An example of an involutive negator on LI is the standard negator Ns,

defined by Ns([x1, x2]) = [1 − x2, 1 − x1], for all x = [x1, x2] ∈ LI .

Definition 3. [22] A conjunctor C on LI is an increasing (LI)2−LI mapping

that coincides with the Boolean conjunction on {0, 1}2 (i.e., C(0LI , 0LI ) =

C(0LI , 1LI ) = C(1LI , 0LI ) = 0LI and C(1LI , 1LI ) = 1LI ). If it also satisfies

(∀x ∈ LI)(C(1LI , x) = C(x, 1LI ) = x) then it is called a semi-norm on LI . If

it is further also commutative and associative, we call it a t-norm on LI .

An example of a t-norm on LI is the conjunctor Cmin, defined by Cmin(x, y) =

[min(x1, y1),min(x2, y2)], for all (x, y) ∈ (LI)2.

Definition 4. [22] An implicator I on LI is a hybrid monotonic (LI)2 −LI

mapping (i.e., decreasing in the first and increasing in the second argument)

that coincides with the Boolean implication on {0, 1}2 (i.e., I(0LI , 0LI ) =

I(0LI , 1LI ) = I(1LI , 1LI ) = 1LI and I(1LI , 0LI ) = 0LI ). If it satisfies (∀x ∈

LI)(I(1LI , x) = x) then it is called a border implicator on LI . If it is con-

trapositive w.r.t. its induced negator NI (NI(x) = I(x, 0LI ),∀x ∈ LI), i.e.
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(∀(x, y) ∈ (LI)2)(I(x, y) = I(NI(y),NI(x))), and if it fulfils the exchange

principle, i.e., (∀(x, y, z) ∈ (LI)3)(I(x, I(y, z)) = I(y, I(x, z))), we call it a

model implicator on LI .

An example of a model implicator on LI is the implicator Imin,Ns
which

is given by Imin,Ns
(x, y) = [max(1 − x2, y1),max(1 − x1, y2)], for all (x, y) ∈

(LI)2.

With the support dA of the interval-valued fuzzy set A in Rn and the

reflection −B of the interval-valued fuzzy set B in Rn respectively defined

by dA = {x | x ∈ Rn and A(x) 6= 0LI} and (−B)(x) = B(−x),∀x ∈ Rn,

we can now give the definitions of the interval-valued fuzzy morphological

operators.

Definition 5. [10, 11] Let C be a conjunctor on LI , let I be an implicator on

LI , and let A,B ∈ IVFS(Rn). The interval-valued fuzzy dilation DI
C(A,B)

is the interval-valued fuzzy set in Rn defined by:

DI
C(A,B)(y) = sup

x∈Ty(−dB)∩dA

C(B(y − x), A(x)),∀y ∈ Rn. (1)

Remark that if y 6∈ D(dA, dB), then DI
C(A,B)(y) = 0LI .

The interval-valued fuzzy erosion EI
I(A,B) is the interval-valued fuzzy set in

Rn defined by:

EI
I(A,B)(y) = inf

x∈Ty(dB)
I(B(x− y), A(x)),∀y ∈ Rn. (2)

The interval-valued fuzzy closing CI
C,I(A,B) and the interval-valued fuzzy

opening OI
C,I(A,B) are the interval-valued fuzzy sets in Rn defined by:

CI
C,I(A,B) = EI

I(D
I
C(A,B), B), (3)

OI
C,I(A,B) = DI

C(E
I
I(A,B), B). (4)
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For a list of the basic properties of these operators, we refer the reader to

[24]. An illustration of the interval-valued morphological operators can for

example be found in [12, 19]

3. Construction of Interval-valued Fuzzy Morphological Operators

- Continuous Case

In this section, we investigate the construction of interval-valued fuzzy

morphological operators based on weak and strict [α1, α2]-cuts in a contin-

uous framework. We start from a more general perspective and investigate

the construction of an interval-valued fuzzy set from an increasing family

of crisp sets in Subsection 3.2.1. In Subsection 3.2.2 these results are then

used to extend increasing operators defined on crisp sets to operators on

interval-valued fuzzy sets. In particular, the obtained construction principle

is applied to the binary dilation that is increasing w.r.t. to both the im-

age and structuring element. First, we give the definitions of the different

[α1, α2]-cuts of an interval-valued fuzzy set.

3.1. The Different [α1, α2]-cuts

The different [α1, α2]-cuts are defined as follows [23] (with ULI = {[x1, x2] ∈

LI | x2 = 1}):

Definition 6. Let A ∈ IVFS(Rn). For [α1, α2] ∈ LI\{0LI}, the weak

[α1, α2]-cut A
α2

α1
of A is defined as:

Aα2

α1
= {x | x ∈ Rn, A1(x) ≥ α1 and A2(x) ≥ α2}

= {x | x ∈ Rn and A(x) ≥LI [α1, α2]}.
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For [α1, α2] ∈ LI\ULI , the strict [α1, α2]-cut A
α2

α1
of A is defined as:

Aα2

α1
= {x | x ∈ Rn, A1(x) > α1 and A2(x) > α2}

= {x | x ∈ Rn and A(x) ≫LI [α1, α2]}.

Remark that since {x | x ∈ Rn, A1(x) ≥ 0 and A2(x) ≥ 0} = Rn and

since {x | x ∈ Rn and A2(x) > 1} = ∅, these cases do not yield new infor-

mation and consequently [α1, α2] = 0LI and [α1, α2] ∈ ULI are excluded for

respectively the weak and the strict [α1, α2]-cut.

3.2. Construction based on weak [α1, α2]-cuts

3.2.1. Introduction

Definition 7. [23] The product of a crisp set C ⊂ Rn and an interval

[α1, α2] ∈ LI\{0LI} is defined as the interval-valued fuzzy set [α1, α2]C, given

by:

[α1, α2]C(x) =





[α1, α2] if x ∈ C

0LI else

, ∀x ∈ Rn. (5)

By using the interval-valued fuzzy sets [α1, α2]A
α2

α1
, based on the weak cuts

of an interval-valued fuzzy set A ∈ IVFS(Rn), the original interval-valued

fuzzy set A can be reconstructed as follows.

Lemma 1. [23] Let A ∈ IVFS(Rn). It holds that A =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]A
α2

α1
,

i.e.:

A(x) = sup
[α1,α2]∈LI\{0

LI }

([α1, α2]A
α2

α1
)(x) = sup {[α1, α2] ∈ LI\{0LI} | x ∈

Aα2

α1
}, ∀x ∈ Rn.
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If we now consider a family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of Rn

that is decreasing ([α1, α2] ≤LI [α3, α4] ⇒ P[α1,α2] ⊇ P[α3,α4]) and we define

the interval-valued fuzzy set R in Rn for all x ∈ Rn as,

R(x) = sup
[α1,α2]∈LI\{0

LI }

([α1, α2]P[α1,α2])(x) (6)

= sup {[α1, α2] ∈ LI\{0LI} | x ∈ P[α1,α2]},

then we might wonder whether it holds that (∀[α1, α2] ∈ LI\{0LI})(Rα2

α1
=

P[α1,α2]). In any case, the following inclusion always holds:

Proposition 1. For a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp sub-

sets of Rn and the interval-valued fuzzy set R defined in (6), it holds that:

(∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] ⊆ Rα2

α1
).

Proof. Let [β1, β2] ∈ LI\{0LI} and let x ∈ P[β1,β2]. It then holds that:

x ∈ P[β1,β2] ⇔ [β1, β2] ∈ {[α1, α2] ∈ LI\{0LI} | x ∈ P[α1,α2]}

⇒ sup {[α1, α2] ∈ LI\{0LI} | x ∈ P[α1,α2]} ≥LI [β1, β2]

⇔ R(x) ≥LI [β1, β2]

⇔ x ∈ R
β2

β1
.

As a consequence, P[β1,β2] ⊆ R
β2

β1
.

However, we do not neccessarily have an equality.

Example 1. Let P[α1,α2] =]− 1 + α1, 1− α2[ for all [α1, α2] ∈ LI\{0LI}. For

[β1, β2] ≪LI [α1, α2] we have that −1 + β1 < −1 + α1 ≤ 1 − α2 < 1 − β2 or

thus −1+α1 ∈ P[β1,β2] and 1−α2 ∈ P[β1,β2]. As a consequence R(−1+α1) =

sup {[β1, β2] ∈ LI\{0LI} | − 1 + α1 ∈ P[β1,β2]} = [α1, α2] and analoguously
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R(1−α2) = [α1, α2], thus −1+α1 ∈ Rα2

α1
and 1−α2 ∈ Rα2

α1
, what means that

Rα2

α1
6= P[α1,α2].

♦

The reverse inclusion (and thus the equality) only holds under certain

conditions. To formulate these conditions, we define the set dP as

dP = {x ∈ Rn | (∃[α1, α2] ∈ LI\{0LI})(x ∈ P[α1,α2])}. (7)

Further, for a fixed point x ∈ dP , we introduce the set Sx, given by

Sx = {[α1, α2] ∈ LI\{0LI} | x ∈ P[α1,α2]}, (8)

and we denote the supremum of this set by sx = [sx,1, sx,2]:

sx = supSx. (9)

Remark that Sx 6= ∅.

The conditions under which the equality holds, are given in the following

Proposition:

Proposition 2. For a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp sub-

sets of Rn, the interval-valued fuzzy set R defined in (6) and the sets dP and

Sx and the supremum sx of the latter set, respectively defined in expressions

(7)-(9), it holds that:

(∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] = Rα2

α1
) ⇔ (∀x ∈ dP )(sx ∈ Sx).

Proof.

⇐: Follows from the proof of Proposition 1. Since sx(= supSx) ∈ Sx it

now also holds that supSx ≥LI [β1, β2] ⇒ [β1, β2] ∈ Sx.
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⇒: Suppose that (∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] = Rα2

α1
), or equivalently

that (∀[α1, α2] ∈ LI\{0LI})(x ∈ P[α1,α2] ⇔ sx = R(x) ≥LI [α1, α2]).

For all x ∈ dP , choosing [α1, α2] = sx = [sx,1, sx,2] ∈ LI\{0LI} implies

x ∈ P[sx,1,sx,2], and thus sx ∈ {[α1, α2] ∈ LI\{0LI} | x ∈ P[α1,α2]} = Sx.

The above condition is however not very useful in practice. For a family

(P[α1,α2])[α1,α2]∈LI\{0
LI } it would be needed to calculate the set Sx for all x ∈ dP

and to check whether sx ∈ Sx. To avoid this work, a necessary condition on

the sets P[α1,α2] can be used.

Proposition 3. For a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp sub-

sets of Rn, the interval-valued fuzzy set R defined in (6) and the sets dP and

Sx and the supremum sx of the latter set, respectively defined in expressions

(7)-(9), it holds that:

(∀x ∈ dP )(sx ∈ Sx) ⇒

(∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] =
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2]).

Proof. Let [α1, α2] ∈ LI\{0LI}. For all x ∈
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2] it holds:

x ∈
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2] ⇔ (∀[β1, β2] ≪LI [α1, α2])(x ∈ P[β1,β2])

⇔ (∀[β1, β2] ≪LI [α1, α2])([β1, β2] ∈

{[γ1, γ2] ∈ LI\{0LI} | x ∈ P[β1,β2]})

⇔ (∀[β1, β2] ≪LI [α1, α2])

(x ∈ dP and [β1, β2] ∈ Sx).
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Since it is given that sx ∈ Sx, it follows from [α1, α2] ≤ sx that [α1, α2] ∈ Sx,

or thus x ∈ P[α1,α2]. As a consequence
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2] ⊆ P[α1,α2].

On the other hand, since the family (P[α1,α2])[α1,α2]∈LI\{0
LI } is a decreasing

family, we have that (∀[β1, β2] ∈ LI\{0LI})([β1, β2] ≪LI [α1, α2] ⇒ P[β1,β2] ⊇

P[α1,α2]) and thus
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2] ⊇ P[α1,α2].

Example 2. The results in Example 1 could also have been obtained using

the above proposition.

Let [α1, α2] ∈ LI\{0LI}, then it holds that:

(∀[β1, β2] ∈ LI\{0LI})

([β1, β2] ≪LI [α1, α2] ⇒ −1 + α1 < −1 + β1 and 1 − α2 < 1 − β2)

⇒ (∀[β1, β2] ∈ LI\{0LI})([β1, β2] ≪LI [α1, α2] ⇒

(∀x ∈ [−1 + α1, 1 − α2])(x ∈ P[β1,β2] =] − 1 + β1, 1 − β2[))

⇒ (∀x ∈ [−1 + α1, 1 − α2])(x ∈
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2]).

So, e.g. 1 − α2 ∈
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2], but 1 − α2 6∈ P[α1,α2], and thus

P[α1,α2] 6=
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2].

♦

The condition in Proposition 3 is however not a sufficient condition as

the following example illustrates.

Example 3. Let P[α1,α2] = [α1+α2

2
, 1] for all [α1, α2] ∈ LI\{0LI}. It holds

that (∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] =
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2]). However, it

does not hold that (∀x ∈ dP )(sx ∈ Sx). Consider for example the set S0.5.

[0.5, 0.5] ∈ S0.5 and for all [α1, α2], α1 can not be greater than 0.5 since then
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Figure 2: A graphical representation of some possible sets Sx.

α1+α2

2
> 0.5. Further also [0, 1] ∈ S0.5, so we can conclude that supS0.5 =

[0.5, 1] 6∈ S0.5.

As a consequence it does not hold that P[α1,α2] = Rα2

α1
for all [α1, α2] ∈

LI\{0LI}. Indeed, R(0.5) = s0.5 = [0.5, 1] and thus 0.5 ∈ R1
0.5 at one hand,

but on the other hand 0.5 6∈ P[0.5,1] = [0.75, 1].

♦

The given condition is not sufficient because is does not necessarily hold

that (∀[β1, β2] ∈ LI\{0LI})([β1, β2] ≪LI sx ⇒ [β1, β2] ∈ Sx)). In the above

example, s0.5 = supS0.5 = [0.5, 1]. So, e.g. [0.3, 0.8] ≪LI s0.5, but [0.3, 0.8] 6∈

S0.5 since 0.5 6∈ P[0.3,0.8] = [0.55, 1].

Fig. 2 gives a graphical representation of some possible sets Sx. In the

first three examples, it does not hold that an interval β ≪ sx belongs to

the set Sx. In these examples, there can be found an α ∈ Sx, for which it

holds that if we keep increasing α1 or α2, α will no longer belong to Sx at
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some point, but still α ≪ sx. However, if we then keep decreasing the other

bound (α2 or α1 respectively) at some point α will again belong to the set

Sx. If we want that every interval β ≪ sx belongs to Sx, Sx needs to have

the form of the fourth example. In that example, for an arbitrary α ∈ Sx, we

see that if we keep increasing α1 or α2, α will no longer belong to Sx at some

point (or reach its maximum possible value). This time however α 6≪ sx

then and decreasing the other bound (α2 or α1 respectively) will not result

in α belonging to the set Sx again anymore. This special case leads us to the

following Lemma.

Lemma 2. For a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of

Rn, the interval-valued fuzzy set R defined in (6) and the sets dP and Sx and

the supremum sx of the latter set, respectively defined in expressions (7)-(9),

we have that

(∀x ∈ dP )(∀t ∈ LI\{0LI})(t≪LI sx ⇒ t ∈ Sx)

m

[SC] :
(
∀[α1, α2] ∈ LI\{0LI}

)(
∀x ∈ Rn

)(
x 6∈ P[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI\{0LI )((β1 < α1 and β2 > α2) ⇒ x 6∈ P[β1,β2])

)
or

(
(∀[β1, β2] ∈ LI\{0LI )((β1 > α1 and β2 < α2) ⇒ x 6∈ P[β1,β2])

))

Proof.

⇒: Suppose that [SC] does not hold, or thus that it holds that
(
∃[α1, α2] ∈

LI\{0LI}
)(

∃x ∈ Rn
)(
x 6∈ P[α1,α2] and

(
(∃[β1, β2] ∈ LI\{0LI})((β1 <

α1 and β2 > α2) and x ∈ P[β1,β2])
)

and
(
(∃[γ1, γ2] ∈ LI\{0LI})((γ1 > α1

and γ2 < α2) and x ∈ P[γ1,γ2])
))

. This would mean that sx,1 ≥ γ1 and
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sx,2 ≥ β2. Further, [α1, α2] ≪LI [γ1, β2] ≤LI sx and thus [α1, α2] ∈ Sx

and x ∈ P[α1,α2], and hence a contradiction.

⇐: Suppose that the condition [SC] is fulfilled. Let t ∈ LI\{0LI}, so that

t≪LI sx. We have to prove that t ∈ Sx.

Suppose that t 6∈ Sx. Since t ≪LI sx, we have that t1 < sx,1. As a

consequence, t1 is no upperbound for the lower borders of the elements

of Sx, which implies that (∃y ∈]t1, sx,1])(∃z ∈ [y, 1])([y, z] ∈ Sx). If

z ≥ t2 then we would get a contradiction since then x ∈ P[y,z] ⊆ P[t1,t2]

and hence t ∈ Sx. So z < t2 and thus (∃[y, z] ∈ LI\{0LI})(y >

t1 and z < t2 and x ∈ P[y,z]).

Analogously, since t≪LI sx, we have that t2 < sx,2. As a consequence,

t2 is no upperbound for the lower borders of the elements of Sx, which

implies that (∃z′ ∈]t2, sx,2])(∃y′ ∈ [0, z′])([y′, z′] ∈ Sx). If y′ ≥ t1 then

we would get a contradiction since then x ∈ P[y′,z′] ⊆ P[t1,t2], i.e., t ∈ Sx.

So y′ < t1 and thus (∃[y′, z′] ∈ LI\{0LI})(y′ < t1 and z′ > t2 and x ∈

P[y′,z′]).

If we combine the above results, then we find that it would hold that

x 6∈ P[t1,t2] and (∃[y, z] ∈ LI\{0LI})(y > t1 and z < t2 and x ∈ P[y,z])

and (∃[y′, z′] ∈ LI\{0LI})(y′ < t1 and z′ > t2 and x ∈ P[y′,z′]), and

hence a contradiction. So t ∈ Sx.

The family defined in Example 1 fulfils the condition [SC]. More general,

a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } for which P[α1,α2] is an interval
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with lower border f(α1) and upper border g(α2), where the functions f and

g are respectively increasing and decreasing over [0, 1] and f(β1) ≤ g(β2) for

all [β1, β2] ∈ LI , is an example of a family that fulfils condition [SC]. An

analogous example of a family that fulfils condition [SC] is e.g. the fam-

ily (P[α1,α2])[α1,α2]∈LI\{0
LI } for which P[α1,α2] is an interval with lower border

h(α2) and upper border i(α1), where the functions h and i are respectively in-

creasing and decreasing over [0, 1] and h(β2) ≤ i(β1) for all [β1, β2] ∈ LI . For

families for which [SC] holds, Proposition 3 is now also a sufficient condition.

Proposition 4. For a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp sub-

sets of Rn that fulfils the condition [SC], the interval-valued fuzzy set R de-

fined in (6) and the sets dP and Sx and the supremum sx of the latter set,

respectively defined in expressions (7)-(9), it holds that:

(∀x ∈ dP )(sx ∈ Sx) ⇔

(∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] =
⋂

[β1,β2]≪
LI [α1,α2]

P[β1,β2]).

Proof.

⇒: Follows from Proposition 3.

⇐: Let x ∈ dP . Since the family (P[α1,α2])[α1,α2]∈LI\{0
LI } fulfils condition
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[SC], Lemma 2 can be used and we obtain successively:

(∀[β1, β2] ∈ LI\{0LI})([β1, β2] ≪LI sx ⇒ [β1, β2] ∈ Sx))

⇔ (∀[β1, β2] ∈ LI\{0LI})([β1, β2] ≪LI sx ⇒ (x ∈ P[β1,β2]))

⇔ x ∈
⋂

[β1,β2]≪
LI sx

P[β1,β2]

⇔ x ∈ P[sx,1,sx,2]

⇔ sx ∈ Sx = {[α1, α2] ∈ LI\{0LI} | x ∈ P[α1,α2]}.

Remark that if a decreasing family (P[α1,α2])[α1,α2]∈LI\{0
LI } does not fulfil

condition [SC], then it does not hold that (∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] =

Rα2

α1
) anyway. Indeed, due to Lemma 2 it does not hold that (∀x ∈ dP )(∀t ∈

LI\{0LI})(t ≪LI sx ⇒ t ∈ Sx) and thus (∃x ∈ dP )(∃t ∈ LI\{0LI})(t ≪LI

sx and t 6∈ Sx). This implies that x 6∈ P[t1,t2] ⊇ P[sx,1,sx,2] or thus sx 6∈ Sx.

Example 4. The family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of Rn, given

by P[α1,α2] = [−1 + α1, 1 − α2] for all [α1, α2] ∈ LI\{0LI}, is an example of

a family for which (∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] = Rα2

α1
), with the interval-

valued fuzzy set R as defined in (6).

♦

3.2.2. The Construction Principle

Based on the results from subsection 3.2.1, we can extend an increasing

operator φ on P(Rn) (i.e. the set of all crisp subsets of Rn) to an operator

Φ on IVFS(Rn) as follows:

Φ(A) =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]φ(Aα2

α1
), for all A ∈ IVFS(Rn).
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Operators having two or more arguments can be extended analogously. We

illustrate this for an increasing operator ψ on P(Rn)×P(Rn) (like the binary

dilation):

Ψ(A,B) =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]ψ(Aα2

α1
, Bα2

α1
), for all A,B ∈ IVFS(Rn).

As discussed in the introduction of this subsection, for the operators Φ

and Ψ it does not necessarily hold that:

(∀[α1, α2] ∈ LI\{0LI})(Φ(A)α2

α1
= φ(Aα2

α1
))

(∀[α1, α2] ∈ LI\{0LI})(Ψ(A,B)α2

α1
= ψ(Aα2

α1
, Bα2

α1
)).

Applied to the binary morphological operators, we have the following

definitions:

Definition 8. A binary morphological operator M is called increasing (w.r.t.

the image) if for binary sets A1, A2, B ∈ Rn, with A1 ⊆ A2, then M(A1, B) ⊆

M(A2, B).

An binary morphological operator M is called increasing w.r.t. the struc-

turing element if for binary sets A,B1, B2 ∈ Rn, with B1 ⊆ B2, then M(A,B1) ⊆

M(A,B2).

It can be shown that the binary dilation, erosion, opening and closing

are all increasing (w.r.t. the image). However, only the dilation is increasing

w.r.t. to both the image and structuring element and can be extended to

interval-valued fuzzy sets by the help of the above introduced construction

principle.
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Let A,B ∈ IVFS(Rn). Using the construction principle, we define the

extended dilation D̃(A,B) of A by B as follows:

D̃(A,B) =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]D(Aα2

α1
, Bα2

α1
). (10)

It turns out that the constructed interval-valued fuzzy dilation corre-

sponds to the interval-valued fuzzy dilation based on the extended minimum

operator Cmin.

Proposition 5. Let A,B ∈ IVFS(Rn), then for all y ∈ Rn it holds that:

D̃(A,B)(y) = sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)) = DI
Cmin

(A,B)(y).

Proof. Let A,B ∈ IVFS(Rn), and let y ∈ Rn. From the definition of the

binary dilation,

D(Aα2

α1
, Bα2

α1
)(y) =





1 if y ∈ D(Aα2

α1
, Bα2

α1
)

0 else

,
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it follows that:

D̃(A,B)(y) = sup
[α1,α2]∈LI\{0

LI }

([α1, α2]D(Aα2

α1
, Bα2

α1
))(y)

= sup {[α1, α2] ∈ LI\{0LI} | y ∈ D(Aα2

α1
, Bα2

α1
)}

= sup {[α1, α2] ∈ LI\{0LI} | Ty(−B
α2

α1
) ∩ Aα2

α1
6= ∅}

= sup {[α1, α2] ∈ LI\{0LI} | (∃x ∈ Ty(−dB) ∩ dA)

(x ∈ Ty(−B
α2

α1
) and x ∈ Aα2

α1
)}

= sup {[α1, α2] ∈ LI\{0LI} | (∃x ∈ Ty(−dB) ∩ dA)

((B1(y − x) ≥ α1 and A1(x) ≥ α1) and

(B2(y − x) ≥ α2 and A2(x) ≥ α2))}

= sup {[α1, α2] ∈ LI\{0LI} | (∃x ∈ Ty(−dB) ∩ dA)

(Cmin(B(y − x), A(x)) ≥LI [α1, α2])}

≡ (∗).

We have to prove that (∗) is equal to

sup {Cmin(B(y − x), A(x)) | x ∈ Ty(−dB) ∩ dA} ≡ (∗∗).

• It holds that:

(∗) = sup {[α1, α2] ∈ LI\{0LI} | (∃x ∈ Ty(−dB) ∩ dA)

([α1, α2] ≤LI Cmin(B(y − x), A(x)))}

≤LI sup {[α1, α2] ∈ LI\{0LI} |

([α1, α2] ≤LI sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)))}

= sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)))

= (∗∗)
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• On the other hand also (∗∗) ≤LI (∗). If Ty(−dB) ∩ dA = ∅, then

(∗∗) = 0LI and thus (∗∗) ≤LI (∗). Otherwise, consider an arbitrary

ǫ≫LI 0LI . Then it holds that:

(∗∗)1 − ǫ1 and (∗∗)2 − ǫ2 are no upper bound for respectively

the lower and the upper bounds of the intervals in the set

{Cmin(B(y − x), A(x)) | x ∈ Ty(−dB) ∩ dA}.

⇒ (∃x ∈ Ty(−dB) ∩ dA)((∗∗)1 − ǫ1 < Cmin(B(y − x), A(x))1) and

(∃x′ ∈ Ty(−dB) ∩ dA)((∗∗)2 − ǫ2 < Cmin(B(y − x′), A(x′))2)

⇒ (∗∗)1 − ǫ1 ∈ {α1 | (∃α2 ∈ [α1, 1] such that [α1, α2] ∈ LI \ {0LI})

and (∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x)))} and

(∗∗)2 − ǫ2 ∈ {α2 | (∃α1 ∈ [0, α2] such that [α1, α2] ∈ LI \ {0LI})

and (∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x)))}

⇒ (∗∗)1 − ǫ1 ≤ sup{α1 | (∃α2 ∈ [α1, 1] such that [α1, α2] ∈ LI \ {0LI})

and (∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x)))} and

(∗∗)2 − ǫ2 ≤ sup{α2 | (∃α1 ∈ [0, α2] such that [α1, α2] ∈ LI \ {0LI})

and (∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x)))}

⇒ [(∗∗)1 − ǫ1, (∗∗)2 − ǫ2] ≤LI sup{[α1, α2] ∈ LI \ {0LI} |

(∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x)))}

Taking ǫ→ 0LI gives the result.

Since the binary erosion is not increasing w.r.t. the structuring element,

we cannot use the construction principle to extend this morphological opera-
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tor to an interval-valued fuzzy morphological operator. Such interval-valued

fuzzy erosion can however be constructed by duality properties [24] (where

(coNA)(x) = N (A(x)), for all A ∈ IVFS(Rn) and x ∈ Rn):

EI
Imin,Ns

(A,B)(y) = (coNs
(DI

Cmin
(coNs

(A),−B)))(y)

The interval-valued fuzzy opening and closing can then be constructed as

a combination of the interval-valued fuzzy dilation and erosion.

3.3. Construction based on strict [α1, α2]-cuts

In the previous subsection we developed a framework to construct an

interval-valued fuzzy dilation using binary dilations of weak [α1, α2]-cuts.

In this subsection we investigate whether this can also be achieved by using

strict [α1, α2]-cuts. Because of the similarity to the case of weak [α1, α2]-cuts,

we will leave the proofs in this subsection to the reader.

3.3.1. Introduction

By using the interval-valued fuzzy sets [α1, α2]A
α2

α1
, based on the strict cuts

of an interval-valued fuzzy set A ∈ IVFS(Rn), the original interval-valued

fuzzy set A can be reconstructed as follows.

Lemma 3. Let A ∈ IVFS(Rn). It holds that A =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]A
α2

α1
,

i.e.:

A(x) = sup
[α1,α2]∈LI\U

LI

([α1, α2]A
α2

α1
)(x) = sup {[α1, α2] ∈ LI\ULI | x ∈

Aα2

α1
}, ∀x ∈ Rn.
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If we now consider a family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of Rn

that is decreasing ([α1, α2] ≤LI [α3, α4] ⇒ Q[α1,α2] ⊇ Q[α3,α4]) and we define

the interval-valued fuzzy set V in Rn for all x ∈ Rn as,

V (x) = sup
[α1,α2]∈LI\U

LI

([α1, α2]Q[α1,α2])(x) (11)

= sup {[α1, α2] ∈ LI\ULI | x ∈ Q[α1,α2]},

then we might wonder whether it holds that (∀[α1, α2] ∈ LI\ULI )(V α2

α1
=

Q[α1,α2]). In contrast to the case of weak [α1, α2]-cuts, there is no inclusion

that always holds.

Example 5. Let Q[α1,α2] = [α1+α2

2
, 1] for all [α1, α2] ∈ LI\ULI . Consider e.g.

x = 0.4. x ∈ Q[0.4,0.4] and α1 can not be greater than 0.4 since then α1+α2

2
>

0.4. Further, 0.4 ∈ Q[0,α2], for all α2 ≤ 0.8. So, V (0.4) = [0.4, 0.8] and thus

0.4 ∈ V 0.7
0.3

at one hand, but on the other hand 0.4 6∈ Q[0.3,0.7] = [0.5, 1]. As a

consequence, it does not hold for all [α1, α2] ∈ LI\ULI that Q[α1,α2] ⊇ V α2

α1
.

Neither does it hold for all [α1, α2] ∈ LI\ULI that Q[α1,α2] ⊆ V α2

α1
. For

every [α1, α2] ∈ LI\ULI , we have for [β1, β2] ≪LI [α1, α2] that β1+β2

2
< α1+α2

2

or thus α1+α2

2
∈ Q[β1,β2]. As a consequence V (α1+α2

2
) = sup {[β1, β2] ∈

LI\ULI | α1+α2

2
∈ Q[β1,β2]} = [α1, α2] or thus α1+α2

2
6∈ V α2

α1
. On the other

hand α1+α2

2
∈ Q[α1,α2] = [α1+α2

2
, 1] what means that V α2

α1
6⊇ Q[α1,α2].

♦

The equality holds however under certain conditions. To formulate these

conditions, we define the set dQ as

dQ = {x ∈ Rn | (∃[α1, α2] ∈ LI\ULI )(x ∈ Q[α1,α2])}. (12)
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Further, for a fixed point x ∈ dQ, we introduce the set Tx, given by

Tx = {[α1, α2] ∈ LI\ULI | x ∈ Q[α1,α2]}, (13)

and we denote the supremum of this set by tx = [tx,1, tx,2]:

tx = supTx. (14)

Remark that Tx 6= ∅.

The following Proposition gives a necessary condition such that the equal-

ity holds:

Proposition 6. For a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp sub-

sets of Rn, the interval-valued fuzzy set V defined in (11) and the sets dQ and

Tx and the supremum tx of the latter set, respectively defined in expressions

(12)-(14), it holds that:

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
) ⇒

(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx ≫LI [β1, β2]).

We would like to mention here that the condition (∀[β1, β2] ∈ Tx)(tx ≫LI

[β1, β2]) ⇒ tx 6∈ Tx is a neccessary and sufficient condition such that it would

hold that (∀[α1, α2] ∈ LI\ULI})(Q[α1,α2] ⊆ V α2

α1
).

Proposition 7. For a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp sub-

sets of Rn, the interval-valued fuzzy set V defined in (11) and the sets dQ and

Tx and the supremum tx of the latter set, respectively defined in expressions

(12)-(14), it holds that:

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] ⊆ V α2

α1
) ⇔

(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx ≫LI [β1, β2]).
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The condition in Proposition 6 is however not a sufficient condition for

the equality to hold as the following example illustrates.

Example 6. Let Q[α1,α2] =]α1+α2

2
, 1] for all [α1, α2] ∈ LI\ULI . Then dQ =

]0, 1]. For x ∈ dQ, it holds that [β1, β2] ∈ Tx ⇔ x ∈]β1+β2

2
, 1], which is

equivalent to β1+β2

2
< x. So [β1, β1] ∈ Tx for all β1 < x. It is impossible that

β1 ≥ x for any [β1, β2] ∈ Tx, since then β1+β2

2
≥ x. So the first component

of each element of Tx is smaller than the first component of the supremum

of Tx (= x). Further, also [0, y] ∈ Tx for all y such that y < 2x and y < 1.

It is impossible that β2 ≥ 2x or β2 ≥ 1 for any [β1, β2] ∈ Tx, since then

respectively β1+β2

2
≥ x and [β1, β2] 6∈ LI\ULI . So the second component of

each element of Tx is smaller than the second component of the supremum

of Tx (= min(2x, 1)). We conclude that (∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx ≫LI

[β1, β2]).

It does however not hold that (∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
). Con-

sider e.g. x = 0.4. x ∈ Q[α1,α1] for all α1 < 0.4 and α1 can not be greater or

equal to 0.4 since then α1+α2

2
≥ 0.4. Further, 0.4 ∈ Q[0,α2], for all α2 < 0.8.

So, V (0.4) = [0.4, 0.8] and thus 0.4 ∈ V 0.7
0.3

at one hand, but on the other

hand 0.4 6∈ Q[0.3,0.7] =]0.5, 1]. As a consequence, it does not hold for all

[α1, α2] ∈ LI\ULI that Q[α1,α2] = V α2

α1
.

♦

The given condition is not sufficient because it does not necessarily hold

that (∀[β1, β2] ∈ LI\ULI )([β1, β2] ≪LI tx ⇒ [β1, β2] ∈ Tx)). In the above ex-

ample, t0.4 = supT0.4 = [0.4, 0.8]. So, e.g. [0.3, 0.7] ≪LI t0.4, but [0.3, 0.7] 6∈

T0.4 since 0.4 6∈ Q[0.3,0.7] =]0.5, 1].

Analogously to Lemma 2 the property (∀[β1, β2] ∈ LI\ULI )([β1, β2] ≪LI
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tx ⇒ [β1, β2] ∈ Tx)) does however hold in the following special case:

Lemma 4. For a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets

of Rn, the interval-valued fuzzy set V defined in (11) and the sets dQ and

Tx and the supremum tx of the latter set, respectively defined in expressions

(12)-(14), we have that

(∀x ∈ dQ)(∀r ∈ LI\ULI )(r ≪LI tx ⇒ r ∈ Tx)

m

[SC ′] :
(
∀[α1, α2] ∈ LI\ULI

)(
∀x ∈ Rn

)(
x 6∈ Q[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI\ULI )((β1 < α1 and β2 > α2) ⇒ x 6∈ Q[β1,β2])

)
or

(
(∀[β1, β2] ∈ LI\ULI )((β1 > α1 and β2 < α2) ⇒ x 6∈ Q[β1,β2])

))

Remark that if a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp sub-

sets of Rn does not satisfy condition [SC’], then it will also not hold that

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
). Indeed, if [SC’] does not hold, then

(∃[α1, α2] ∈ LI\ULI )(∃x ∈ Rn)(x 6∈ Q[α1,α2] and (∃[β1, β2] ∈ LI\ULI )(β1 <

α1 and β2 > α2 and x ∈ Q[β1,β2]) and (∃[γ1, γ2] ∈ LI\ULI )(γ1 > α1 and γ2 <

α2 and x ∈ Q[γ1,γ2])). This would mean that V1(x) = tx,1 ≥ γ1 > α1 and

V2(x) = tx,2 ≥ β2 > α2. As a consequence, x ∈ V α2

α1
and x 6∈ Q[α1,α2].

In what follows we will therefore concentrate on families for which [SC’]

holds.

For a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of Rn for

which condition [SC’] does hold, the necessary condition in Proposition 6

becomes a sufficient condition.

Proposition 8. For a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp sub-

sets of Rn that fulfils condition [SC’], the interval-valued fuzzy set V defined
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in (11) and the sets dQ and Tx and the supremum tx of the latter set, respec-

tively defined in expressions (12)-(14), it holds that:

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
) ⇔

(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx ≫LI [β1, β2]).

The condition in Proposition 8 is however not always efficient in practice.

For a family (Q[α1,α2])[α1,α2]∈LI\U
LI

that satisfies condition [SC’], it would be

needed to calculate the set Tx for all x ∈ dQ and to check whether tx ≫LI

[β1, β2] for all [β1, β2] ∈ Tx. To facilitate this work, an equivalent condition

on the sets Q[α1,α2] can be used.

Proposition 9. For a decreasing family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp sub-

sets of Rn that satisfies condition [SC’], the sets dQ and Tx and the supremum

tx of the latter set, respectively defined in expressions (12)-(14), it holds that:

(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx ≫LI [β1, β2]) ⇔

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] =
⋃

[β1,β2]≫
LI [α1,α2]

Q[β1,β2]).

Example 7. The family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of Rn, given

by Q[α1,α2] = [−1 + α1, 1 − α2] for all [α1, α2] ∈ LI\ULI , is an example

of a family that satisfies condition [SC’], but for which it does not hold

that (∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
), with the interval-valued fuzzy

set V as defined in (11). Indeed, let [α1, α2] ∈ LI\ULI , then it holds that

(∀[β1, β2] ∈ LI\ULI )([β1, β2] ≫LI [α1, α2] ⇒ −1+β1 > −1+α1 and 1−α2 >

1 − β2) or thus (∀[β1, β2] ∈ LI\ULI )([β1, β2] ≫LI [α1, α2] ⇒ −1 + α1 6∈

Q[β1,β2] and 1 − α2 6∈ Q[β1,β2]). On the other hand −1 + α1 ∈ Q[α1,α2] and
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1 − α2 ∈ Q[α1,α2]. So
⋃

[β1,β2]≫
LI [α1,α2]

Q[β1,β2] 6= Q[α1,α2].

♦

Example 8. The family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of Rn, given

by Q[α1,α2] =] − 1 + α1, 1 − α2[ for all [α1, α2] ∈ LI\ULI , is an example of

a family for which (∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
), with the interval-

valued fuzzy set V as defined in (11).

♦

3.3.2. The Construction Principle

Based on the results from subsection 3.3.1 and analogous to the construc-

tion principle based on weak [α1, α2]-cuts, an increasing operator φ on P(Rn)

can be extended to an operator Φ on IVFS(Rn) as follows:

Φ(A) =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]φ(Aα2

α1
), for all A ∈ IVFS(Rn).

Operators having two or more arguments can be extended analogously. We

illustrate this for an increasing operator ψ on P(Rn)×P(Rn) (like the binary

dilation):

Ψ(A,B) =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]ψ(Aα2

α1
, Bα2

α1
), for all A,B ∈ IVFS(Rn).

As discussed in the introduction of this subsection, for the operators Φ

and Ψ it does not necessarily hold that:

(∀[α1, α2] ∈ LI\ULI )(Φ(A)α2

α1
= φ(Aα2

α1
))

(∀[α1, α2] ∈ LI\ULI )(Ψ(A,B)α2

α1
= ψ(Aα2

α1
, Bα2

α1
)).

We now extend the binary dilation to interval-valued fuzzy sets by the

help of the above introduced construction principle as follows:
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Let A,B ∈ IVFS(Rn). The extended dilation D̃(A,B)
′

of A by B is

then given by:

D̃(A,B)
′

=
⋃

[α1,α2]∈LI\U
LI

[α1, α2]D(Aα2

α1
, Bα2

α1
). (15)

In constrast to the constructed interval-valued fuzzy dilation based on

weak [α1, α2]-cuts, the constructed dilation based on strict [α1, α2]-cuts does

not necessarily correspond to the interval-valued fuzzy dilation based on the

conjunctor Cmin. This will however be the case under a specific condition

that is not that hard to satisfy in practice.

Proposition 10. Let A,B ∈ IVFS(Rn), then for all y ∈ Rn it holds that:

D̃(A,B)
′

(y) ≤LI sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)) = DI
Cmin

(A,B)(y).

If A(x) ≫LI 0LI , ∀x ∈ dA and B(x) ≫LI 0LI , ∀x ∈ dB, then

D̃(A,B)
′

(y) = sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)) = DI
Cmin

(A,B)(y).

If either one of the properties A(x) ≫LI 0LI , ∀x ∈ dA or B(x) ≫LI

0LI , ∀x ∈ dB is not satisfied, then (∗) is not necessarily equal to (∗∗), as the

following example illustrates.

Example 9. Let A(0) = [0, 0.7], A(x) = [0.3, 0.5], ∀x ∈]0, 1] and B(x) =

[0.2, 0.6],∀x ∈ [−0.5, 0]. Let y = 0, then T0(−dB) ∩ dA = [0, 0.5]. ∀x ∈

]0, 0.5], Cmin(B(0 − x), A(x)) = [0.2, 0.5]. For x = 0, Cmin(B(0), A(0)) =

[0, 0.6]. As a consequence sup{Cmin(B(y − x), A(x)) | x ∈ Ty(−dB) ∩ dA} =

sup{[0, 0.6], [0.2, 0.5]} = [0.2, 0.6]. On the other hand, there does not exist an

[α1, α2] ∈ LI such that [α1, α2] ≪LI [0, 0.6] and (∀[α1, α2] ∈ LI)([α1, α2] ≪LI
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[0.2, 0.5] ⇒ (∃x ∈ T0(−dB) ∩ dA)([α1, α2] ≪LI Cmin(B(y − x), A(x)))), from

which it follows that sup{[α1, α2] ∈ LI | (∃x ∈ T0(−dB) ∩ dA)([α1, α2] ≪LI

Cmin(B(y − x), A(x)))} = [0.2, 0.5].

Remark that if A(0) would have been smaller or equal to [0, 0.5], then we

would have had an equality.

♦

The construction principle can not be used to extend the binary erosion

to an interval-valued fuzzy morphological operator, since it is not increasing

w.r.t. the structuring element. Similarly as for weak [α1, α2]-cuts, it can

however be constructed by duality properties.

The interval-valued fuzzy opening and closing can then be constructed as

a combination of the interval-valued fuzzy dilation and erosion.

4. Construction of Interval-valued Fuzzy Morphological Operators

- Discrete Case

In practice, we do not work in a continuous framework, since any device

performs a twofold sampling on the considered images and structuring ele-

ments: (i) To make it possible to store an image, its domain is sampled down

to a matrix with a given number of rows and columns. In other words, the

image domain is sampled down from Rn to Zn. (ii) Further, also the grey

values can no longer take every possible value in the unit interval [0, 1], but

they are limited to a finite subchain of it. As a consequence in interval-valued

fuzzy morphology we will no longer work in the continuous chain LI but in

a finite subchain LI
r,s, defined by LI

r,s = {[ r−k
r−1

, s−l
s−1

] | k, l ∈ Z and 1 ≤ k ≤

r and 1 ≤ l ≤ s} for given integers r and s. Note that in practice usually
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r = s, since on the same device the number of bits used to represent the grey

value for the lower border and for the upper border of the grey interval will

be the same. The image A and the structuring element B now thus belong

to IVFSr,s(Z
n), i.e. the class of all interval-valued fuzzy sets in Zn with

membership intervals in LI
r,s. For such sets A and B it holds that ∀x ∈ Zn,

A1(x) and B1(x) belong to Ir = { r−k
r−1

| k ∈ Z and 1 ≤ k ≤ r} and analogously

A2(x) and B2(x) belong to Is{
s−l
s−1

| l ∈ Z and 1 ≤ l ≤ s}.

The definitions of negators, conjunctors and implicators on the chain

LI
r,s can be adopted from the continuous framework by replacing LI by LI

r,s.

Remark however that not every operator on LI has a discrete counterpart.

The conjunctor C given by C(x, y) = [x1 · y1, x2 · y2] for all x, y ∈ LI , for

example, is not defined on LI
r,s because the product of two elements of Ir

(respectively Is) does not necessarily belong to Ir (respectively Is) again.

For the discrete interval-valued fuzzy dilation and erosion we now get the

following definitions:

Definition 9. Let C be a conjunctor on LI
r,s, let I be an implicator on LI

r,s and

let A,B ∈ IVFSr,s(Z
n). The discrete interval-valued dilation DI

C(A,B) ∈

IVFSr,s(Z
n) and the discrete interval-valued erosion EI(A,B) ∈ IVFSr,s(Z

n)

are respectively defined as:

DI
C(A,B)(y) = sup

x∈Ty(−dB)∩dA

C(B(y − x), A(x))

= [ max
x∈Ty(−dB)∩dA

C(B(y − x), A(x))1, max
x∈Ty(−dB)∩dA

C(B(y − x), A(x))2].

EI
I(A,B)(y) = inf

x∈Ty(dB)
I(B(x− y), A(x))

= [ min
x∈Ty(dB)

I(B(x− y), A(x))1, min
x∈Ty(dB)

I(B(x− y), A(x))2].
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Remark that for y 6∈ D(dA, dB) it will hold that DI
C(A,B)(y) = 0LI .

Similarly as in the continuous framework, the interval-valued fuzzy opening

and closing are formed as a combination of a dilation and an erosion.

We will now investigate the construction of interval-valued fuzzy mor-

phological operators from the corresponding binary operators in the above

introduced discrete framework. It will be seen that the characterization of

the supremum in the discrete case has as a consequence that some of the

difficulties from the continuous case do not arise anymore. Moreover, also

some stronger relationships will hold. We will use the notation ULI
r,s

for the

discrete counterpart of the set ULI : ULI
r,s

= {[x1, x2] ∈ LI
r,s | x2 = 1}.

4.1. Construction based on weak [α1, α2]-cuts

Lemma 5. Let A ∈ IVFSr,s(Z
n). It holds that A =

⋃
[α1,α2]∈LI

r,s\{0LI }

[α1, α2]A
α2

α1
,

i.e., ∀x ∈ Zn:

A(x) = sup
[α1,α2]∈LI

r,s\{0LI }

([α1, α2]A
α2

α1
)(x)

= sup {[α1, α2] ∈ LI
r,s\{0LI} | x ∈ Aα2

α1
}

= [max{α1 | (∃α2 ∈ [α1, 1] \ {0LI})([α1, α2] ∈ LI
r,s and x ∈ Aα2

α1
)},

max{α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ LI
r,s and x ∈ Aα2

α1
)}].

Proof. Similar to the proof of Lemma 1.

If we now consider a family (P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp subsets of Zn

that is decreasing and we define the interval-valued fuzzy set R in Zn for all

x ∈ Zn as,

R(x) = sup
[α1,α2]∈LI

r,s\{0LI }

([α1, α2]P[α1,α2])(x) (16)

= sup {[α1, α2] ∈ LI
r,s\{0LI} | x ∈ P[α1,α2]},
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then we might wonder whether it holds that (∀[α1, α2] ∈ LI
r,s\{0LI})(Rα2

α1
=

P[α1,α2]). Just as in the continuous case, the following inclusion always holds:

Proposition 11. For a decreasing family (P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp

subsets of Zn and the interval-valued fuzzy set R defined in (16), it holds

that:

(∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] ⊆ Rα2

α1
).

Proof. Analogous to the proof of Proposition 1.

The following lemma gives us a condition such that the reverse inclusion

would also hold.

Lemma 6. For a decreasing family (P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp subsets

of Zn, it holds that

(∀[α1, α2] ∈ LI
r,s\{0LI})(∀x ∈ Zn)

[([α1, α2] ∈ {[β1, β2] ∈ LI
r,s\{0LI} | x ∈ P[β1,β2]} ⇔

sup {[β1, β2] ∈ LI
r,s\{0LI} | x ∈ P[β1,β2]} ≥LI [α1, α2])

m

[S̃C] :
(
∀[α1, α2] ∈ LI

r,s\{0LI}
)(

∀x ∈ Zn
)(
x 6∈ P[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI

r,s\{0LI})((β1 < α1 and β2 ≥ α2) ⇒ x 6∈ P[β1,β2])
)

or

(
(∀[β1, β2] ∈ LI

r,s\{0LI )((β1 ≥ α1 and β2 < α2) ⇒ x 6∈ P[β1,β2])
))
.

Proof. Analogous to the proof of Lemma 2.

The following proposition is a straightforward consequence of the above

lemma and Proposition 11.
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Proposition 12. For a decreasing family (P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp

subsets of Zn that satisfies [S̃C] and the interval-valued fuzzy set R defined

in (16), it holds that:

(∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] = Rα2

α1
).

Proof. Follows from the proof of Proposition 11 by using Lemma 6.

Remark that if the decreasing family (P[α1,α2])[α1,α2]∈LI
r,s\{0LI } does not sat-

isfy the condition [S̃C], it will not hold that (∀[α1, α2] ∈ LI\{0LI})(P[α1,α2] =

Rα2

α1
), with the set R as defined in (16). Indeed, if [S̃C] does not hold, then

(∃[α1, α2] ∈ LI
r,s\{0LI})(∃x ∈ Zn)(x 6∈ P[α1,α2] and (∃[β1, β2] ∈ LI

r,s\{0LI})(β1 <

α1 and β2 ≥ α2 and x ∈ P[β1,β2]) and (∃[γ1, γ2] ∈ LI
r,s\{0LI})(γ1 ≥ α1 and γ2 <

α2 and x ∈ P[γ1,γ2])). This would mean that R1(x) ≥ γ1 ≥ α1 and R2(x) ≥

β2 ≥ α2. As a consequence, x ∈ Rα2

α1
and x 6∈ P[α1,α2].

The constructions made in the continuous case can also be done in the

discrete case with the same results. Some remarks need however to be given.

Proposition 13. Let A,B ∈ IVFSr,s(Z
n), then for all y ∈ Zn it holds that:

D̃(A,B)(y) = sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)) = DI
Cmin

(A,B)(y).

Proof. The proof is similar to the one of Proposition 5, where it has to be

shown that (∗) = (∗∗), with (∗) and (∗∗) given by:

(∗) = sup {[α1, α2] ∈ LI
r,s\{0LI} |

(∃x ∈ Ty(−dB) ∩ dA)(Cmin(B(y − x), A(x)) ≥LI [α1, α2])},

(∗∗) = sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x))).
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The proof of (∗) ≤ (∗∗) is analogous to the proof of Proposition 5. The proof

of (∗∗) ≤ (∗) however is much simpler in the discrete framework, since we do

not have to make use of the characterization of the supremum. If Ty(−dB)∩

dA = ∅, then (∗∗) = 0LI and thus (∗∗) ≤LI (∗). Otherwise, in the discrete

case, it immediately follows from (∗∗) = sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)))

that

(∗∗)1 ∈ {α1 | (∃α2 ∈ [α1, 1])([α1, α2] ∈ LI
r,s\{0LI} and

(∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x))))} and

(∗∗)2 ∈ {α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ LI
r,s\{0LI} and

(∃x ∈ Ty(−dB) ∩ dA)([α1, α2] ≤LI Cmin(B(y − x), A(x))))}

⇒ [(∗∗)1, (∗∗)2] ≤LI (∗)

Similarly to the continuous case, an interval-valued fuzzy erosion, opening

and closing can then be constructed by using duality properties.

4.2. Construction based on strict [α1, α2]-cuts

Because of the similarity to the case of weak [α1, α2]-cuts, we will leave

the proofs in this subsection to the reader.

We first determine the unit er (respectively es) of the finite chain Ir =

{0, 1
r−1

, . . . , r−2
r−1

, 1} (respectively Is = {0, 1
s−1

, . . . , s−2
s−1

, 1}) as er = 1
r−1

(re-

spectively es = 1
s−1

). We assume that er = es, which is usually the case in

practice. Further, the sum of (respectively difference between) an intervals

[x1, x2] and [er, es] is given by [x1 + er, x2 + es] (respectively [x1 − er, x2 −
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es]). The assumption er = es is needed if we want [x1 + er, x2 + es] and

[x1 − er, x2 − es] to be intervals. Additionally, we define the set Gr,s by

Gr,s = {[α1, α2] | (α1 = −er and α2 ∈ (Is \ {1}) ∪ {−es}))}. Remark that

Gr,s ∩ LI
r,s = ∅. Finally, we extend the order relation on LI

r,s to LI
r,s ∪Gr,s in

a straightforward manner and for this reason, we will use the same notation

≤LI :

x ≤LI y ⇔ x1 ≤ y1 and x2 ≤ y2, ∀x, y ∈ LI
r,s ∪Gr,s. (17)

Also the order relation ≪LI is extended analogously. The infimum and supre-

mum of an arbitrary subset S of LI
r,s ∪Gr,s are then respectively given by:

inf S = [inf
x∈S

x1, inf
x∈S

x2] = [min
x∈S

x1,min
x∈S

x2], (18)

supS = [sup
x∈S

x1, sup
x∈S

x2] = [max
x∈S

x1,max
x∈S

x2]. (19)

We can now formulate the following lemma that resembles Lemma 3, but

does differ from it.

Lemma 7. Let A ∈ IVFSr,s(Z
n), then it holds ∀x ∈ Zn that:

A(x) = [max{α1 | (∃α2 ∈ [α1, 1[)([α1, α2] ∈ (LI
r,s\ULI

r,s
) ∪Gr,s and

A1(x) > α1 and A2(x) > α2)},max{α2 | (∃α1 ∈ [0, α2])

([α1, α2] ∈ (LI
r,s\ULI

r,s
) ∪Gr,s and A1(x) > α1 and A2(x) > α2)}] + [er, es].

As a consequence, we have to take into account the interval [er, es] also

for the construction of interval-valued fuzzy operators. If we now consider a

family (Q[α1,α2])[α1,α2]∈(LI
r,s\ULI

r,s
)∪Gr,s

of crisp subsets of Zn that is decreasing

and we define the interval-valued fuzzy set V in Zn as,

V (x) = sup {[α1, α2] ∈ (LI
r,s \ ULI

r,s
) ∪Gr,s | x ∈ Q[α1,α2]} + [er, es],∀x ∈ Zn,

(20)
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then we might wonder whether it holds that (∀[α1, α2] ∈ LI
r,s\ULI )(V α2

α1
=

Q[α1,α2]). Remark that nonetheless the fact that V is for all x ∈ Zn con-

structed as the supremum of a set in (LI
r,s \ ULI

r,s
) ∪ Gr,s, V (x) will always

belong LI
r,s.

In contrast to the continuous case, the inclusion Q[β1,β2] ⊆ V
β2

β1

always

holds.

Proposition 14. For a decreasing family (Q[α1,α2])[α1,α2]∈(LI
r,s\ULI

r,s
)∪Gr,s

of

crisp subsets of Zn and the interval-valued fuzzy set V defined in (20), it

holds that:

(∀[α1, α2] ∈ LI
r,s\ULI

r,s
)(Q[α1,α2] ⊆ V α2

α1
).

The following lemma gives us a condition such that the reverse inclusion

would also hold.

Lemma 8. For a decreasing family (Q[α1,α2])[α1,α2]∈(LI
r,s\ULI

r,s
)∪Gr,s

of crisp

subsets of Zn, it holds that

(∀[α1, α2] ∈ (LI
r,s \ ULI

r,s
) ∪Gr,s)(∀x ∈ Zn)

([α1, α2] ∈ {[β1, β2] ∈ (LI
r,s \ ULI

r,s
) ∪Gr,s | x ∈ Q[β1,β2]} ⇔

sup {[β1, β2] ∈ (LI
r,s \ ULI

r,s
) ∪Gr,s | x ∈ Q[β1,β2]} ≥LI [α1, α2])

m

[S̃C ′] :
(
∀[α1, α2] ∈ (LI

r,s \ ULI
r,s

) ∪Gr,s

)(
∀x ∈ Zn

)(
x 6∈ Q[α1,α2] ⇒

(
(∀[β1, β2] ∈ (LI

r,s \ ULI
r,s

) ∪Gr,s)((β1 < α1 and β2 ≥ α2) ⇒ x 6∈ Q[β1,β2])
)

or

(
(∀[β1, β2] ∈ (LI

r,s \ ULI
r,s

) ∪Gr,s)((β1 ≥ α1 and β2 < α2) ⇒ x 6∈ Q[β1,β2])
))
.

The following proposition is a straightforward consequence of the above

lemma and Proposition 14.
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Proposition 15. For a decreasing family (Q[α1,α2])[α1,α2]∈(LI
r,s\ULI

r,s
)∪Gr,s

of

crisp subsets of Zn that satisfies [S̃C ′] and the interval-valued fuzzy set V

defined in (20), it holds that:

(∀[α1, α2] ∈ LI
r,s\ULI

r,s
)(Q[α1,α2] = V α2

α1
).

Remark that if a decreasing family (Q[α1,α2])[α1,α2]∈(LI
r,s\ULI

r,s
)∪Gr,s

of crisp

subsets of Zn does not satisfy condition [S̃C ′], then it will also not hold

that (∀[α1, α2] ∈ LI
r,s\ULI

r,s
)(Q[α1,α2] = V α2

α1
). Indeed, if [S̃C ′] does not hold,

then (∃[α1, α2] ∈ (LI
r,s \ ULI

r,s
) ∪ Gr,s)(∃x ∈ Zn)(x 6∈ Q[α1,α2] and (∃[β1, β2] ∈

(LI
r,s \ ULI

r,s
) ∪ Gr,s)(β1 < α1 and β2 ≥ α2 and x ∈ Q[β1,β2]) and (∃[γ1, γ2] ∈

(LI
r,s\ULI

r,s
)∪Gr,s)(γ1 ≥ α1 and γ2 < α2 and x ∈ Q[γ1,γ2])). This would mean

that V1(x) ≥ γ1 + er > α1 and V2(x) ≥ β2 + es > α2. Since γ2 < α2 and

β1 < α1, [α1, α2] 6∈ Gr,s, but [α1, α2] ∈ LI
r,s. As a consequence, x ∈ V α2

α1
and

x 6∈ Q[α1,α2].

For the construction of the interval-valued fuzzy dilation by strict [α1, α2]-

cuts, we find a stronger result in the discrete case than in the continuous case.

We first need to extend the definition of strict [α1, α2]-cuts from (LI
r,s \ULI

r,s
)

to (LI
r,s \ ULI

r,s
) ∪Gr,s as follows. For A ∈ IVFSr,s(Z

n) and [α1, α2] ∈ Gr,s,

Aα2

α1
=





Zn α1 = −er and α2 = −es

Aα2 α1 = −er and α2 6= −es

.

We define D̃(A,B)
′

for all x ∈ Zn as

D̃(A,B)
′

(x) = sup {[α1, α2] ∈ (LI
r,s\ULI

r,s
)∪Gr,s | x ∈ D(Aα2

α1
, Bα2

α1
)}+[er, es].

Remark that D̃(A,B)
′

(x) ∈ LI
r,s for all x ∈ Zn.
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The following proposition states that the above constructed dilation D̃(A,B)
′

equals the dilation DI
Cmin

.

Proposition 16. Let A,B ∈ IVFSr,s(Z
n), then for all y ∈ Zn it holds that:

D̃(A,B)
′

(y) = sup
x∈Ty(−dB)∩dA

Cmin(B(y − x), A(x)) = DI
Cmin

(A,B)(y).

Similarly to the continuous case, an interval-valued fuzzy erosion, opening

and closing can then be constructed by using duality properties.

5. Conclusion

In this paper we have studied the construction of increasing interval-

valued fuzzy operators from their corresponding binary counterparts, in par-

ticular the construction of morphological operators that are increasing w.r.t.

to both the image and structuring element. This construction was investi-

gated both in the general continuous case and the practical discrete case. In

this discrete case, we work with interval-valued fuzzy sets from IVFSr,s(Z
n)

instead of IVFS(Rn) since in practice, both the image domain and the range

of grey values are sampled due to technical limitations. It was shown that

in both cases the constructed interval-valued fuzzy dilation corresponds to

the interval-valued fuzzy dilation DI
Cmin

, that is dual to the erosion EImin,Ns
,

which allows us to construct the other basic morphological operators. Fur-

ther, we found out that the characterization of the supremum in the discrete

case circumvents some of the difficulties from the continuous case. Moreover,

some stronger relationships hold in this practical case. A drawback of the

discrete framework is that not all operators from the continuous framework

have a discrete counterpart.
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